代码拉取完成,页面将自动刷新
<?xml version="1.0" encoding="UTF-8"?>
<hdevelop file_version="1.2" halcon_version="19.11.0.0">
<procedure name="main">
<interface/>
<body>
<l>dev_update_off ()</l>
<c></c>
<c>*** 创建检测模型 ***</c>
<c>**设置参数</c>
<c>*必须的参数</c>
<l>Backbone := 'pretrained_dl_classifier_compact.hdl'</l>
<c>*class_ids的数量,标签的总类别数量</c>
<l>NumClasses := 3</l>
<c>*模型所需图片的规格参数</c>
<l>ImageWidth := 640</l>
<l>ImageHeight := 480</l>
<l>ImageNumChannels := 3</l>
<c>*</c>
<l>MinLevel := 2</l>
<l>MaxLevel := 4</l>
<l>NumSubscales := 3</l>
<l>AspectRatios := [1.0,0.5,2.0]</l>
<c>*容量参数</c>
<l>Capacity := 'medium'</l>
<c></c>
<c>*创建模型参数字典</c>
<l>create_dict (DLModelDetectionParam)</l>
<l>set_dict_tuple (DLModelDetectionParam, 'image_width', ImageWidth)</l>
<l>set_dict_tuple (DLModelDetectionParam, 'image_height', ImageHeight)</l>
<l>set_dict_tuple (DLModelDetectionParam, 'image_num_channels', ImageNumChannels)</l>
<l>set_dict_tuple (DLModelDetectionParam, 'min_level', MinLevel)</l>
<l>set_dict_tuple (DLModelDetectionParam, 'max_level', MaxLevel)</l>
<l>set_dict_tuple (DLModelDetectionParam, 'num_subscales', NumSubscales)</l>
<l>set_dict_tuple (DLModelDetectionParam, 'aspect_ratios', AspectRatios)</l>
<l>set_dict_tuple (DLModelDetectionParam, 'capacity', Capacity)</l>
<c>* 创建模型</c>
<l>create_dl_model_detection (Backbone, NumClasses, DLModelDetectionParam, DLModelHandle)</l>
<c></c>
<c>*** 预处理数据 ***</c>
<c>**设置路径</c>
<c>*总路径</c>
<l>DataDir := 'C:/Users/75615/Desktop/检测1'</l>
<c>*图片路径</c>
<l>HalconImageDir:= DataDir + '/coinTest/'</l>
<c>*数据集路径</c>
<l>PillBagHdictFile := DataDir + '/coin_data.hdict'</l>
<c>*输出的模型路径</c>
<l>DLModelFileName := DataDir + '/pretrained_dl_model_detection.hdl'</l>
<c>* 用于预处理数据集的输出</c>
<l>DataDirectory := DataDir + '/dataset' </l>
<c>* 分别存储预处理参数以便在推理过程中使用。</c>
<l>PreprocessParamFileName := DataDirectory + '/dl_preprocess_param_' + ImageWidth + 'x' + ImageHeight</l>
<c></c>
<c>**设置参数</c>
<l>TrainingPercent := 80</l>
<l>ValidationPercent := 10</l>
<c></c>
<l>SeedRand := 42</l>
<c></c>
<c>*判断总路径是否存在</c>
<l>file_exists (DataDir, FileExists)</l>
<l>if (not FileExists)</l>
<l> make_dir (DataDir)</l>
<l>endif</l>
<c></c>
<c>*读取数据集</c>
<l>read_dict (PillBagHdictFile, [], [], DLDataset)</l>
<c>*获取数据集ID给到模型参数</c>
<l>get_dict_tuple (DLDataset, 'class_ids', ClassIDs)</l>
<l>set_dl_model_param (DLModelHandle, 'class_ids', ClassIDs)</l>
<c>*生成新的模型</c>
<l>write_dl_model (DLModelHandle, DLModelFileName)</l>
<l>set_system ('seed_rand', SeedRand)</l>
<c>*分割数据集</c>
<l>split_dl_dataset (DLDataset, TrainingPercent, ValidationPercent, [])</l>
<c>*从模型中获取预处理参数</c>
<l>create_dict (GenParam)</l>
<l>set_dict_tuple (GenParam, 'overwrite_files', true)</l>
<l>create_dl_preprocess_param_from_model (DLModelHandle, 'false', 'full_domain', [], [], [], DLPreprocessParam)</l>
<c>*预处理</c>
<l>preprocess_dl_dataset (DLDataset, DataDirectory, DLPreprocessParam, GenParam, DLDatasetFilename)</l>
<c></c>
<c>*** 训练 ***</c>
<c>* 设置训练相关模型参数.</c>
<l>set_dl_model_param (DLModelHandle, 'batch_size', 1)</l>
<l>set_dl_model_param (DLModelHandle, 'learning_rate', 0.001)</l>
<l>set_dl_model_param (DLModelHandle, 'runtime_init', 'immediately')</l>
<c></c>
<c>* 创建在模型中使用的训练参数字典 </c>
<c>*参数:模型、将训练模型的时期数(越大训练效果越好)、定义将多少时间传递给下一个模型评估</c>
<c>* 是否显示训练进度、设置随机种子、输出参数的名称、输出参数的字典、输出句柄</c>
<l>create_dl_train_param (DLModelHandle, 50, 1, 'true', 42, [], [], TrainParam)</l>
<c>*在数据集上训练一个基于深度学习的模型</c>
<l>train_dl_model (DLDataset, DLModelHandle, TrainParam, 0, TrainResults, TrainInfos, EvaluationInfos)</l>
<c>* </c>
<c>* 读取最佳模型,该模型由train_dl_model写入文件</c>
<l>read_dl_model ('model_best.hdl', DLModelHandle)</l>
<l>dev_disp_text ('Press F5 to continue', 'window', 'bottom', 'left', 'black', [], [])</l>
<l>stop ()</l>
<c>* </c>
<l>dev_close_window ()</l>
<l>dev_close_window ()</l>
<c></c>
<c>*** 评估 ***</c>
<l>create_dict (WindowDict)</l>
<l>create_dict (GenParamEval)</l>
<l>set_dict_tuple (GenParamEval, 'detailed_evaluation', true)</l>
<l>set_dict_tuple (GenParamEval, 'show_progress', true)</l>
<c>*对选定的DLDataset样本评估DLModelHandle给出的模型。</c>
<l>evaluate_dl_model (DLDataset, DLModelHandle, 'split', 'test', GenParamEval, EvaluationResult, EvalParams)</l>
<c>* </c>
<l>create_dict (DisplayMode)</l>
<l>set_dict_tuple (DisplayMode, 'display_mode', ['pie_charts_precision','pie_charts_recall'])</l>
<c>*可视化类型检测模型的详细评估结果</c>
<l>dev_display_detection_detailed_evaluation (EvaluationResult, EvalParams, DisplayMode, WindowDict)</l>
<l>stop ()</l>
<c>*关闭字典中包含句柄的所有窗口。</c>
<l>dev_display_dl_data_close_windows (WindowDict)</l>
<c></c>
<c>*** 测试 ***</c>
<c>*获取该路径下的所有图片 </c>
<l>list_image_files (HalconImageDir, 'default', 'recursive', ImageFiles)</l>
<c>*对图片文件进行随机排序</c>
<l>tuple_shuffle (ImageFiles, ImageFilesShuffled)</l>
<c>*每次读取一张</c>
<l>set_dl_model_param (DLModelHandle, 'batch_size', 1)</l>
<l>for i := 0 to |ImageFiles|-1 by 1</l>
<l> read_image (Image, ImageFilesShuffled[i])</l>
<l> gen_dl_samples_from_images (Image, DLSampleInference)</l>
<l> preprocess_dl_samples (DLSampleInference, DLPreprocessParam)</l>
<l> apply_dl_model (DLModelHandle, DLSampleInference, [], DLResult)</l>
<c> *为一个示例可视化不同的图像、注释和推理结果。</c>
<l> dev_display_dl_data (DLSampleInference, DLResult, DLDataset, 'bbox_result', [], WindowDict) </l>
<l> dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])</l>
<l> stop ()</l>
<l>endfor</l>
<c>*关闭可视化窗体</c>
<l>dev_display_dl_data_close_windows (WindowDict)</l>
<c></c>
</body>
<docu id="main">
<parameters/>
</docu>
</procedure>
</hdevelop>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。