加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train.py 5.64 KB
一键复制 编辑 原始数据 按行查看 历史
Ting-Chun Wang 提交于 2019-06-13 20:10 . change license to BSD
import time
import os
import numpy as np
import torch
from torch.autograd import Variable
from collections import OrderedDict
from subprocess import call
import fractions
def lcm(a,b): return abs(a * b)/fractions.gcd(a,b) if a and b else 0
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
opt = TrainOptions().parse()
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
opt.print_freq = lcm(opt.print_freq, opt.batchSize)
if opt.debug:
opt.display_freq = 1
opt.print_freq = 1
opt.niter = 1
opt.niter_decay = 0
opt.max_dataset_size = 10
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
if opt.fp16:
from apex import amp
model, [optimizer_G, optimizer_D] = amp.initialize(model, [model.optimizer_G, model.optimizer_D], opt_level='O1')
model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
else:
optimizer_G, optimizer_D = model.module.optimizer_G, model.module.optimizer_D
total_steps = (start_epoch-1) * dataset_size + epoch_iter
display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = epoch_iter % dataset_size
for i, data in enumerate(dataset, start=epoch_iter):
if total_steps % opt.print_freq == print_delta:
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
# whether to collect output images
save_fake = total_steps % opt.display_freq == display_delta
############## Forward Pass ######################
losses, generated = model(Variable(data['label']), Variable(data['inst']),
Variable(data['image']), Variable(data['feat']), infer=save_fake)
# sum per device losses
losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
loss_dict = dict(zip(model.module.loss_names, losses))
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0)
############### Backward Pass ####################
# update generator weights
optimizer_G.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_G, optimizer_G) as scaled_loss: scaled_loss.backward()
else:
loss_G.backward()
optimizer_G.step()
# update discriminator weights
optimizer_D.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_D, optimizer_D) as scaled_loss: scaled_loss.backward()
else:
loss_D.backward()
optimizer_D.step()
############## Display results and errors ##########
### print out errors
if total_steps % opt.print_freq == print_delta:
errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.print_freq
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
visualizer.plot_current_errors(errors, total_steps)
#call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"])
### display output images
if save_fake:
visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('synthesized_image', util.tensor2im(generated.data[0])),
('real_image', util.tensor2im(data['image'][0]))])
visualizer.display_current_results(visuals, epoch, total_steps)
### save latest model
if total_steps % opt.save_latest_freq == save_delta:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.module.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
if epoch_iter >= dataset_size:
break
# end of epoch
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
### save model for this epoch
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.module.save('latest')
model.module.save(epoch)
np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
### instead of only training the local enhancer, train the entire network after certain iterations
if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
model.module.update_fixed_params()
### linearly decay learning rate after certain iterations
if epoch > opt.niter:
model.module.update_learning_rate()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化