加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
precompute_BM.py 4.58 KB
一键复制 编辑 原始数据 按行查看 历史
Shuai_Yan 提交于 2020-04-16 17:41 . Added some notes
import numpy as np
def precompute_BM(img, kHW, NHW, nHW, tauMatch):
"""
:search for similar patches
:param img: input image
:param kHW: length of side of patch
:param NHW: how many patches are stacked
:param nHW: length of side of search area
:param tauMatch: threshold determine whether two patches are similar
:return ri_rj_N__ni_nj: The top N most similar patches to the referred patch
:return threshold_count: according to tauMatch how many patches are similar to the referred one
"""
img = img.astype(np.float64)
height, width = img.shape
Ns = 2 * nHW + 1
threshold = tauMatch * kHW * kHW
sum_table = np.ones((Ns, Ns, height, width)) * 2 * threshold # di, dj, ph, pw
row_add_mat, column_add_mat = get_add_patch_matrix(height, width, nHW, kHW)
diff_margin = np.pad(np.ones((height - 2 * nHW, width - 2 * nHW)), nHW, 'constant', constant_values=0.)
sum_margin = (1 - diff_margin) * 2 * threshold
for di in range(-nHW, nHW + 1):
for dj in range(-nHW, nHW + 1):
t_img = translation_2d_mat(img, right=-dj, down=-di)
diff_table_2 = (img - t_img) * (img - t_img) * diff_margin
sum_diff_2 = row_add_mat @ diff_table_2 @ column_add_mat
sum_table[di + nHW, dj + nHW] = np.maximum(sum_diff_2, sum_margin) # sum_table (2n+1, 2n+1, height, width)
sum_table = sum_table.reshape((Ns * Ns, height * width)) # di_dj, ph_pw
sum_table_T = sum_table.transpose((1, 0)) # ph_pw__di_dj
argsort = np.argpartition(sum_table_T, range(NHW))[:, :NHW]
argsort[:, 0] = (Ns * Ns - 1) // 2
argsort_di = argsort // Ns - nHW
argsort_dj = argsort % Ns - nHW
near_pi = argsort_di.reshape((height, width, -1)) + np.arange(height)[:, np.newaxis, np.newaxis]
near_pj = argsort_dj.reshape((height, width, -1)) + np.arange(width)[np.newaxis, :, np.newaxis]
ri_rj_N__ni_nj = np.concatenate((near_pi[:, :, :, np.newaxis], near_pj[:, :, :, np.newaxis]), axis=-1)
sum_filter = np.where(sum_table_T < threshold, 1, 0)
threshold_count = np.sum(sum_filter, axis=1)
threshold_count = closest_power_of_2(threshold_count, max_=NHW)
threshold_count = threshold_count.reshape((height, width))
return ri_rj_N__ni_nj, threshold_count
def get_add_patch_matrix(h, w, nHW, kHW):
row_add = np.eye(h - 2 * nHW)
row_add = np.pad(row_add, nHW, 'constant')
row_add_mat = row_add.copy()
for k in range(1, kHW):
row_add_mat += translation_2d_mat(row_add, right=k, down=0)
column_add = np.eye(w - 2 * nHW)
column_add = np.pad(column_add, nHW, 'constant')
column_add_mat = column_add.copy()
for k in range(1, kHW):
column_add_mat += translation_2d_mat(column_add, right=0, down=k)
return row_add_mat, column_add_mat
def translation_2d_mat(mat, right, down):
mat = np.roll(mat, right, axis=1)
mat = np.roll(mat, down, axis=0)
return mat
def closest_power_of_2(M, max_):
M = np.where(max_ < M, max_, M)
while max_ > 1:
M = np.where((max_ // 2 < M) * (M < max_), max_ // 2, M)
max_ //= 2
return M
if __name__ == '__main__':
import os
import cv2
from utils import add_gaussian_noise, symetrize
# <hyper parameter>
# ref_i, ref_j = 196, 142
ref_i, ref_j = 164, 135
# ref_i, ref_j = 271, 206
kHW = 8
NHW = 3
nHW = 16
tauMatch = 2500
# <hyper parameter \>
im = cv2.imread('test_data/image/Cameraman.png', cv2.IMREAD_GRAYSCALE)
im = im[100:, :]
ref_i, ref_j = 64, 135
im_noisy = add_gaussian_noise(im, 10, seed=1)
img_noisy_p = symetrize(im_noisy, nHW)
near_pij, threshold_count = precompute_BM(img_noisy_p, kHW=kHW, NHW=NHW, nHW=nHW, tauMatch=tauMatch)
im = cv2.cvtColor(img_noisy_p, cv2.COLOR_GRAY2RGB)
# <draw search area>
points_list = [(ref_j - nHW, ref_i - nHW), (ref_j + nHW, ref_i - nHW), (ref_j - nHW, ref_i + nHW),
(ref_j + nHW, ref_i + nHW)]
for point in points_list:
cv2.circle(im, point, 0, (0, 0, 255), 1)
# <draw search area \>
# <draw reference patch>
cv2.rectangle(im, (ref_j, ref_i), (ref_j + kHW, ref_i + kHW), color=(255, 0, 0), thickness=1)
# <draw reference patch \>
# <draw similar patches>
count = threshold_count[ref_i, ref_j]
for i, Pnear in enumerate(near_pij[ref_i, ref_j]):
if i == 0:
continue
if i > count:
break
y, x = Pnear
cv2.rectangle(im, (x, y), (x + kHW, y + kHW), color=(0, 255, 0), thickness=1)
# <draw similar patches \>
# cv2.imshow('im', im)
# cv2.waitKey()
cv2.imwrite('BM_real_im_test.png', im)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化