代码拉取完成,页面将自动刷新
同步操作将从 mirrors_jbrownlee/Datasets 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
Citation Request:
This breast cancer domain was obtained from the University Medical Centre,
Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and
M. Soklic for providing the data. Please include this citation if you plan
to use this database.
1. Title: Breast cancer data (Michalski has used this)
2. Sources:
-- Matjaz Zwitter & Milan Soklic (physicians)
Institute of Oncology
University Medical Center
Ljubljana, Yugoslavia
-- Donors: Ming Tan and Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu)
-- Date: 11 July 1988
3. Past Usage: (Several: here are some)
-- Michalski,R.S., Mozetic,I., Hong,J., & Lavrac,N. (1986). The
Multi-Purpose Incremental Learning System AQ15 and its Testing
Application to Three Medical Domains. In Proceedings of the
Fifth National Conference on Artificial Intelligence, 1041-1045,
Philadelphia, PA: Morgan Kaufmann.
-- accuracy range: 66%-72%
-- Clark,P. & Niblett,T. (1987). Induction in Noisy Domains. In
Progress in Machine Learning (from the Proceedings of the 2nd
European Working Session on Learning), 11-30, Bled,
Yugoslavia: Sigma Press.
-- 8 test results given: 65%-72% accuracy range
-- Tan, M., & Eshelman, L. (1988). Using weighted networks to
represent classification knowledge in noisy domains. Proceedings
of the Fifth International Conference on Machine Learning, 121-134,
Ann Arbor, MI.
-- 4 systems tested: accuracy range was 68%-73.5%
-- Cestnik,G., Konenenko,I, & Bratko,I. (1987). Assistant-86: A
Knowledge-Elicitation Tool for Sophisticated Users. In I.Bratko
& N.Lavrac (Eds.) Progress in Machine Learning, 31-45, Sigma Press.
-- Assistant-86: 78% accuracy
4. Relevant Information:
This is one of three domains provided by the Oncology Institute
that has repeatedly appeared in the machine learning literature.
(See also lymphography and primary-tumor.)
This data set includes 201 instances of one class and 85 instances of
another class. The instances are described by 9 attributes, some of
which are linear and some are nominal.
5. Number of Instances: 286
6. Number of Attributes: 9 + the class attribute
7. Attribute Information:
1. Class: no-recurrence-events, recurrence-events
2. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
3. menopause: lt40, ge40, premeno.
4. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44,
45-49, 50-54, 55-59.
5. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26,
27-29, 30-32, 33-35, 36-39.
6. node-caps: yes, no.
7. deg-malig: 1, 2, 3.
8. breast: left, right.
9. breast-quad: left-up, left-low, right-up, right-low, central.
10. irradiat: yes, no.
8. Missing Attribute Values: (denoted by "?")
Attribute #: Number of instances with missing values:
6. 8
9. 1.
9. Class Distribution:
1. no-recurrence-events: 201 instances
2. recurrence-events: 85 instances
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。