代码拉取完成,页面将自动刷新
'''
Description:
继matlab标定后,使用OpenCV进行手眼标定;
首先使用matlab camera calibrate 工具箱进行标定,保存标定文件cameraParams.mat;
'''
from scipy.io import loadmat
import cv2
import numpy as np
from math import *
from utils_py.mat2ini import load_mat_to_cameraParams
import utils_py.utils_trans as utils_trans
def eye_in_hand_calibrate(dir_path = "./eye_in_hand_cali_data"):
# 设置 NumPy 的打印选项,禁用科学计数法
np.set_printoptions(suppress=True)
# 读取matlab标定文件
mat_file_path = f'{dir_path}/cameraParams.mat'
calibrate_dict = load_mat_to_cameraParams(mat_file_path, f'{dir_path}/camera.ini')
RotationVectors = calibrate_dict['RotationVectors'][0]
TranslationVectors = calibrate_dict['TranslationVectors'][0]
#计算board to cam 变换矩阵
R_all_chess_to_cam_1=[]
T_all_chess_to_cam_1=[]
for i in range(len(RotationVectors)):
R_chess_to_cam, _ = cv2.Rodrigues(np.array(RotationVectors[i]))
R_all_chess_to_cam_1.append(R_chess_to_cam)
T_all_chess_to_cam_1.append(np.array(TranslationVectors[i]))
#计算end to base变换矩阵
R_all_end_to_base_1=[]
T_all_end_to_base_1=[]
end_pose = utils_trans.read_pose_from_txt(f'{dir_path}/end_pose.txt')
for pose in end_pose:
RT = utils_trans.xyzRxRyRz_to_RT(pose[0], pose[1], pose[2], pose[3], pose[4], pose[5])
R_all_end_to_base_1.append(RT[:3, :3])
T_all_end_to_base_1.append(RT[:3, 3].reshape((3, 1)))
R,T=cv2.calibrateHandEye(R_all_end_to_base_1, T_all_end_to_base_1, R_all_chess_to_cam_1, T_all_chess_to_cam_1)#手眼标定
print("手眼矩阵分解得到的旋转矩阵")
print(R)
print("\n")
print("手眼矩阵分解得到的平移矩阵")
print(T)
RT=np.column_stack((R,T))
RT = np.row_stack((RT, np.array([0, 0, 0, 1])))#即为cam to end变换矩阵
print("\n")
print('相机相对于末端的变换矩阵为:')
print(RT)
# 指定保存的文件路径
file_path = f"{dir_path}/cam2end.txt"
# 将矩阵写入文本文件
with open(file_path, 'w') as file:
for row in RT:
row_str = ' '.join(map(str, row)) # 将矩阵的每一行转换为字符串
file.write(row_str + '\n') # 写入文件并添加换行符
#结果验证,原则上来说,每次结果相差较小
for i in range(len(RotationVectors)):
# 得到机械手末端到基座的变换矩阵,通过机械手末端到基座的旋转矩阵与平移向量先按列合并,然后按行合并形成变换矩阵格式
RT_end_to_base=np.column_stack((R_all_end_to_base_1[i],T_all_end_to_base_1[i]))
RT_end_to_base=np.row_stack((RT_end_to_base,np.array([0,0,0,1])))
# print(RT_end_to_base)
# 标定版相对于相机的齐次矩阵
RT_chess_to_cam=np.column_stack((R_all_chess_to_cam_1[i],T_all_chess_to_cam_1[i]))
RT_chess_to_cam=np.row_stack((RT_chess_to_cam,np.array([0,0,0,1])))
# print(RT_chess_to_cam)
# 手眼标定变换矩阵
RT_cam_to_end=np.column_stack((R,T))
RT_cam_to_end=np.row_stack((RT_cam_to_end,np.array([0,0,0,1])))
# print(RT_cam_to_end)
# 即为固定的棋盘格相对于机器人基坐标系位姿
RT_chess_to_base=RT_end_to_base@RT_cam_to_end@RT_chess_to_cam
RT_chess_to_base=np.linalg.inv(RT_chess_to_base)
print('第',i,'次')
print(f"{RT_chess_to_base[:3,:]}")
print('')
if __name__ == '__main__':
dir_path = "./eye_in_hand_cali_data"
eye_in_hand_calibrate(dir_path)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。