加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_study.py 2.41 KB
一键复制 编辑 原始数据 按行查看 历史
风酒 提交于 2019-09-15 09:39 . train reverse
# -*- coding:utf-8 -*-
import tensorflow as tf
import cv2
from tqdm import *
import time
from utils.data_utils import create_iterator
def test_dim_size():
# slim = tf.contrib.slim
input = tf.Variable(tf.random_uniform([1, 5, 5, 3]))
kernel1 = tf.Variable(tf.random_uniform([1, 1, 3, 1])) # 1,1,3,1
kernel2 = tf.concat([kernel1, kernel1], 3) # 1,1,3,3
out1 = tf.nn.conv2d(input, kernel1, strides=[1, 1, 1, 1], padding='VALID')
out2 = tf.nn.conv2d(input, kernel2, strides=[1, 1, 1, 1], padding='VALID')
with tf.Session() as sess:
tf.global_variables_initializer().run()
print("\ninput----->\n", input.eval())
print("\nkernel----->\n", kernel1.eval())
print("\nkernel2----->\n", kernel2.eval())
print("\n----->\n", out1.eval())
print("\n----->\n", out2.eval())
def test_dataset():
train_init_op, val_init_op, image_ids, image, y_true = create_iterator()
with tf.Session() as sess:
sess.run(train_init_op)
for i in range(2):
sess.run(image)
def test_txt_write():
first = []
second = []
f = open('mergeTXT.txt', 'w')
with open('first.txt', 'r') as f1:
for line in f1:
line = line.strip()
first.append(line)
with open('second.txt', 'r') as f2:
for line2 in f2:
line2 = line2.strip()
second.append(line2)
for i in range(0, 399):
result = first[i] + '\t' + second[i] + '\n'
f.write(result)
def test_tqdm():
with tqdm(total=100) as pbar:
for i in range(10):
time.sleep(1)
pbar.update(10)
def test_tqdm2():
with trange(10000) as t:
for i in t:
t.set_description('下载速度 %i' % i)
def test_plot_bbox():
img = cv2.imread('data/demo_data/dog.jpg')
#
cv2.rectangle(img, (10, 100), (20, 200), (0, 255, 0), 2)
cv2.imshow('img_detect', img)
cv2.waitKey(0)
def test_watch_save_weights():
from tensorflow.python import pywrap_tensorflow
# model_dir = 'checkpoint/model-epoch_12_step_64_loss_1.9270_lr_0.0001'
model_dir = 'data/darknet_weights/yolov3.ckpt'
reader = pywrap_tensorflow.NewCheckpointReader(model_dir)
var_to_shape_map = reader.get_variable_to_shape_map()
print("have {} tensor".format(len(var_to_shape_map)))
for key in var_to_shape_map:
print("tensor_name:{}, shape:{}".format(key, reader.get_tensor(key).shape))
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化