代码拉取完成,页面将自动刷新
同步操作将从 周何彬/Moth-analysis 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
from PySide2.QtWidgets import QApplication, QMessageBox
from PySide2.QtUiTools import QUiLoader
import os
import PySide2
from PySide2.QtCore import QTimer
from PySide2.QtWidgets import QApplication, QLabel
import time
import cv2
import torch
import numpy
import copy
import matplotlib.mlab as mlab
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression, scale_coords, xyxy2xywh
from PySide2.QtGui import QPixmap
class Stats():
def __init__(self):
# 从文件中加载UI定义
# 从 UI 定义中动态 创建一个相应的窗口对象
# 注意:里面的控件对象也成为窗口对象的属性了
# 比如 self.ui.button , self.ui.textEdit
self.ui = QUiLoader().load('ui/main.ui')
self.timer_camera = QTimer()
self.ui.label_img.setFixedSize(self.ui.label_img.width(), self.ui.label_img.height())
self.ui.label_graph.setFixedSize(self.ui.label_graph.width(), self.ui.label_graph.height())
self.ui.button.clicked.connect(self.detection)
self.ui.button_show.clicked.connect(self.show_img)
self.graph = [[0],
[0],
[0]]
self.graph = numpy.array(self.graph)
self.labels = [['fireflies'],
["ants"],
["butterflies"]]
self.labels = numpy.array(self.labels)
def load_model(self,weights, device):
model = attempt_load(weights, map_location=device) # load FP32 model
return model
def to_graph(self,c, data):
self.graph[c, 0] += data
def draw_graph(self,graph, labels):
X = [self.labels[0, 0], self.labels[1, 0], self.labels[2, 0]]
Y = [self.graph[0, 0], self.graph[1, 0], self.graph[2, 0]]
fig = plt.figure()
plt.bar(X, Y, 0.4, color="green")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("bar chart")
plt.show()
plt.savefig("fireflies/graph/barChart.jpg")
def show_results(self,img, xywh, conf, class_num):
h, w, c = img.shape
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), thickness=tl, lineType=cv2.LINE_AA)
tf = max(tl - 1, 1) # font thickness
# label = str(labels[int(class_num)]) + ': ' + str(conf)[:5]
label = str(self.labels[int(class_num)])
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [0, 0, 255], thickness=tf, lineType=cv2.LINE_AA)
return img
def detect_one(self,model, image_path, device):
# Load model
img_size = 320 # 要转化为320*320的图像
conf_thres = 0.12
iou_thres = 0.3
orgimg = image_path
img0 = copy.deepcopy(orgimg) # 复制图像,防止对原图造成影响
assert orgimg is not None, 'Image Not Found ' + image_path # 检测是否存在这个图像
h0, w0 = orgimg.shape[:2] # orig hw #获得shape中的两个值
r = img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation #判断原图的大小与要转换的图的大小关系
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR # 如果r小则要使用resize中的扩大参数,若果r大则设置为调小参数
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp) # 更改大小(按照比例缩放,并且使最大的边等于320)
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size #看设置的大小是否为32可除,若不是则改为32可整除
img = letterbox(img0, new_shape=imgsz)[0] # 使用letterbox用单一的像素点补全不够320的边
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416 #第一个中括号,代表BGR转化为RGB,
# Run inference
t0 = time.time()
img = torch.from_numpy(img).to(device) # 转化为tensor
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0 #把0 - 255的数值转化为 0.0 - 1.0的数值
if img.ndimension() == 3: # 如果维度等于3
img = img.unsqueeze(0) # 那么在0的位置(第一个位置)增加一个维度
# Inference
pred = model(img)[0]
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres) # 非极大值抑制,排除同一个物体上冗余的框框
print(len(pred))
# pred: 网络的输出结果
# conf_thres: 置信度阈值
# ou_thres: iou阈值
# classes: 是否只保留特定的类别
# agnostic_nms: 进行nms是否也去除不同类别之间的框
# max - det: 保留的最大检测框数量
# ---NMS, 预测框格式: xywh(中心点 + 长宽) -->xyxy(左上角右下角)
# pred是一个列表list[torch.tensor], 长度为batch_size
# 每一个torch.tensor的shape为(num_boxes, 6), 内容为box + conf + cls
print('pred: ', pred)
print('img.shape: ', img.shape)
print('orgimg.shape: ', orgimg.shape)
# Process detections
for i, det in enumerate(pred): # detections per image #组合为一个索引序列,i为索引表,det为对应数值的表,
gn = torch.tensor(orgimg.shape)[[1, 0, 1, 0]].to(
device) # normalization gain whwh #。to(device)指把这些数据复制一份放到gpu上
if len(det):
# 得到的图像还原回原来的图像上面,即 将预测信息映射到原图
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # 每一类都检测
c = int(c)
n = int(n)
self.to_graph(c, n)
print(self.graph)
# print("_____")
# print(int(c))
# print(n)
for j in range(det.size()[0]):
xywh = (xyxy2xywh(torch.tensor(det[j, :4]).view(1, 4)) / gn).view(-1).tolist()
conf = det[j, 4].cpu().numpy()
class_num = det[j, 4].cpu().numpy()
orgimg = self.show_results(orgimg, xywh, conf, class_num)
# Stream results
print(f'Done. ({time.time() - t0:.3f}s)')
return orgimg
def detection(self):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
weights = 'fireflies/weight/best.pt'
model = self.load_model(weights, device)
img = cv2.imread("fireflies/img/qq_pic_merged_1667308380854.jpg")
img = self.detect_one(model, img, device)
self.draw_graph(self.graph,self.labels)
#cv2.imshow("img", img)
cv2.imwrite("fireflies/aaa/aaa.png",img)
def show_img(self):
iamge = QPixmap('fireflies/aaa/aaa.png')
graph = QPixmap("fireflies/graph/barChart.jpg")
self.ui.label_img.setPixmap(iamge)
self.ui.label_graph.setPixmap(graph)
if __name__ == '__main__':
app = QApplication([])
stats = Stats()
stats.ui.show()
app.exec_()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。