加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
func_TDX.py 4.74 KB
一键复制 编辑 原始数据 按行查看 历史
wking 提交于 2021-04-15 11:09 . plot.py增加绘制趋势线功能
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
模仿通达信语句的函数库,如MA(C,5) REF(C,1)等样式。函数简单,只为了和通达信公式看起来一致,方便排查。
传入类型必须是pandas Series类型。
传出类型:只有MA输出具体数值,其他所有函数传出仍然是Series类型
作者:wking [http://wkings.net]
"""
import pandas as pd
def rolling_window(a, window):
"""
copy from http://stackoverflow.com/questions/6811183/rolling-window-for-1d-arrays-in-numpy
必须 numpy > 1.20 才有此函数
"""
from numpy.lib.stride_tricks import sliding_window_view
return sliding_window_view(a, window_shape=window)
def REF(value, day):
"""
引用若干周期前的数据。如果传入列表,返回具体数值。如果传入序列,返回序列
"""
if 'list' in str(type(value)):
result = value[~day]
elif 'series' in str(type(value)):
result = value.shift(periods=day)
return result
def MA(value, day) -> float:
"""
返回当前周期的简单移动平均值。传入可以是列表或序列类型。传出是当前周期的简单移动平均具体值。
:rtype: float
"""
import talib
# result = statistics.mean(value[-day:])
result = talib.SMA(value, day).iat[-1]
return result
def SMA(value, day):
"""
返回简单移动平均序列。传入可以是列表或序列类型。传出是历史到当前周期为止的简单移动平均序列。
"""
import talib
# result = statistics.mean(value[-day:])
result = talib.SMA(value, day)
return result
def HHV(series, day):
"""
返回最大值
"""
# value = max(series[-day:])
if day == 0:
value = pd.Series(index=series.index, dtype=float)
tmp = series.iat[0]
value.iat[0] = tmp
for i in range(series.shape[0]):
if tmp < series.iat[i]:
tmp = series.iat[i]
value.iat[i] = tmp
value = value.fillna(method='ffill') # 向下填充无效值
else:
value = series.rolling(day).max()
value.iloc[0:day-1] = HHV(series.iloc[0:day-1], 0)
return value
def LLV(series, day):
"""
返回最小值
"""
# value = min(value[-day:])
if day == 0:
value = pd.Series(index=series.index, dtype=float)
tmp = series.iat[0]
value.iat[0] = tmp
for i in range(series.shape[0]):
if tmp > series.iat[i]:
tmp = series.iat[i]
value.iat[i] = tmp
value = value.fillna(method='ffill') # 向下填充无效值
else:
value = series.rolling(day).min()
value.iloc[0:day - 1] = LLV(series.iloc[0:day - 1], 0)
return value
def COUNT(series, n):
# rolling方法不行,虽然简单明了但是性能太差
# result = series.rolling(n) \
# .apply(lambda x: x.value_counts().to_dict()[True] if True in x.value_counts().to_dict() else 0)
df = series.to_frame('cond')
df.insert(df.shape[1], 'result', 0)
for index_true in df.loc[df['cond'] == True].index.to_list():
index_int = df.index.get_loc(index_true)
column_int = df.columns.get_loc('result')
df.iloc[index_int:index_int + n, column_int] = df.iloc[index_int:index_int + n, column_int] + 1
result = df['result']
return result
def EXIST(cond, n):
series = cond[-n:]
if True in series.to_list():
return True
else:
return False
def CROSS(s1, s2):
cond1 = s1 > s2
cond2 = s1.shift() <= s2.shift()
result = cond1 & cond2
return result
def BARSLAST(series):
# 上一次条件成立到当前的周期数.
# 用法:
# BARSLAST(X):上一次X不为0到现在的天数
# 例如:
# BARSLAST(CLOSE/REF(CLOSE,1)>=1.1)表示上一个涨停板到当前的周期数
result = pd.Series(index=series.index, dtype=int)
i = 0
for k, v in series.iteritems():
if v:
i = 0
result[k] = i
else:
i = i + 1
result[k] = i
return result
def BARSLASTCOUNT(cond):
# 统计连续满足条件的周期数.
# 用法:
# BARSLASTCOUNT(X),统计连续满足X条件的周期数.
# 例如:
# BARSLASTCOUNT(CLOSE>OPEN)表示统计连续收阳的周期数
result = pd.Series(index=cond.index, dtype=int)
i = 0
for k, v in cond.iteritems():
if v:
i = i + 1
result[k] = i
else:
i = 0
result[k] = i
return result
def VALUEWHEN(cond, value_series):
result = pd.Series(index=cond.index, dtype=float)
result.loc[cond.loc[cond==True].keys()] = value_series.loc[cond.loc[cond==True].keys()]
result = result.fillna(method='ffill') # 向下填充无效值
return result
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化