Fetch the repository succeeded.
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef MARLIN_H
#define MARLIN_H
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include "MarlinConfig.h"
#ifdef DEBUG_GCODE_PARSER
#include "parser.h"
#endif
#include "enum.h"
#include "types.h"
#include "fastio.h"
#include "utility.h"
#include "serial.h"
void idle(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
#endif
);
void manage_inactivity(const bool ignore_stepper_queue=false);
extern const char axis_codes[XYZE];
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extern bool extruder_duplication_enabled;
#endif
#if HAS_X2_ENABLE
#define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
#elif HAS_X_ENABLE
#define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
#else
#define enable_X() NOOP
#define disable_X() NOOP
#endif
#if HAS_Y2_ENABLE
#define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
#elif HAS_Y_ENABLE
#define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
#else
#define enable_Y() NOOP
#define disable_Y() NOOP
#endif
#if HAS_Z2_ENABLE
#define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
#elif HAS_Z_ENABLE
#define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
#else
#define enable_Z() NOOP
#define disable_Z() NOOP
#endif
#if ENABLED(MIXING_EXTRUDER)
/**
* Mixing steppers synchronize their enable (and direction) together
*/
#if MIXING_STEPPERS > 4
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); E4_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); E4_ENABLE_WRITE(!E_ENABLE_ON); }
#elif MIXING_STEPPERS > 3
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
#elif MIXING_STEPPERS > 2
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
#else
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
#endif
#define enable_E1() NOOP
#define disable_E1() NOOP
#define enable_E2() NOOP
#define disable_E2() NOOP
#define enable_E3() NOOP
#define disable_E3() NOOP
#define enable_E4() NOOP
#define disable_E4() NOOP
#else // !MIXING_EXTRUDER
#if HAS_E0_ENABLE
#define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E0() NOOP
#define disable_E0() NOOP
#endif
#if E_STEPPERS > 1 && HAS_E1_ENABLE
#define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E1() NOOP
#define disable_E1() NOOP
#endif
#if E_STEPPERS > 2 && HAS_E2_ENABLE
#define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E2() NOOP
#define disable_E2() NOOP
#endif
#if E_STEPPERS > 3 && HAS_E3_ENABLE
#define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E3() NOOP
#define disable_E3() NOOP
#endif
#if E_STEPPERS > 4 && HAS_E4_ENABLE
#define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E4() NOOP
#define disable_E4() NOOP
#endif
#endif // !MIXING_EXTRUDER
#if ENABLED(HANGPRINTER)
#define enable_A() enable_X()
#define enable_B() enable_Y()
#define enable_C() enable_Z()
#define __D_ENABLE(p) E##p##_ENABLE_WRITE(E_ENABLE_ON)
#define _D_ENABLE(p) __D_ENABLE(p)
#define enable_D() _D_ENABLE(EXTRUDERS)
// Don't allow any axes to be disabled
#undef disable_X
#undef disable_Y
#undef disable_Z
#define disable_X() NOOP
#define disable_Y() NOOP
#define disable_Z() NOOP
#if EXTRUDERS >= 1
#undef disable_E1
#define disable_E1() NOOP
#if EXTRUDERS >= 2
#undef disable_E2
#define disable_E2() NOOP
#if EXTRUDERS >= 3
#undef disable_E3
#define disable_E3() NOOP
#if EXTRUDERS >= 4
#undef disable_E4
#define disable_E4() NOOP
#endif // EXTRUDERS >= 4
#endif // EXTRUDERS >= 3
#endif // EXTRUDERS >= 2
#endif // EXTRUDERS >= 1
#endif // HANGPRINTER
#if ENABLED(G38_PROBE_TARGET)
extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run
G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
#endif
void enable_all_steppers();
void disable_e_stepper(const uint8_t e);
void disable_e_steppers();
void disable_all_steppers();
void sync_plan_position();
void sync_plan_position_e();
#if IS_KINEMATIC
void sync_plan_position_kinematic();
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
#else
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
#endif
void flush_and_request_resend();
void ok_to_send();
void kill(const char*);
void quickstop_stepper();
extern uint8_t marlin_debug_flags;
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
extern bool Running;
inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; }
bool enqueue_and_echo_command(const char* cmd); // Add a single command to the end of the buffer. Return false on failure.
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
void clear_command_queue();
#if ENABLED(M100_FREE_MEMORY_WATCHER) || ENABLED(POWER_LOSS_RECOVERY)
extern char command_queue[BUFSIZE][MAX_CMD_SIZE];
#endif
#define HAS_LCD_QUEUE_NOW (ENABLED(MALYAN_LCD) || (ENABLED(ULTIPANEL) && (ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(PID_AUTOTUNE_MENU) || ENABLED(ADVANCED_PAUSE_FEATURE))))
#define HAS_QUEUE_NOW (ENABLED(SDSUPPORT) || HAS_LCD_QUEUE_NOW)
#if HAS_QUEUE_NOW
// Return only when commands are actually enqueued
void enqueue_and_echo_command_now(const char* cmd);
#if HAS_LCD_QUEUE_NOW
void enqueue_and_echo_commands_now_P(const char * const cmd);
#endif
#endif
extern millis_t previous_move_ms;
inline void reset_stepper_timeout() { previous_move_ms = millis(); }
/**
* Feedrate scaling and conversion
*/
extern float feedrate_mm_s;
extern int16_t feedrate_percentage;
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01f)
extern bool axis_relative_modes[XYZE];
extern uint8_t axis_homed, axis_known_position;
constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
extern volatile bool wait_for_heatup;
#if HAS_RESUME_CONTINUE
extern volatile bool wait_for_user;
#endif
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
extern bool suspend_auto_report;
#endif
extern float current_position[XYZE], destination[XYZE];
/**
* Workspace offsets
*/
#if HAS_WORKSPACE_OFFSET
#if HAS_HOME_OFFSET
extern float home_offset[XYZ];
#endif
#if HAS_POSITION_SHIFT
extern float position_shift[XYZ];
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
extern float workspace_offset[XYZ];
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
#elif HAS_HOME_OFFSET
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
#elif HAS_POSITION_SHIFT
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
#endif
#define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
#define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
#else
#define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
#define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
#endif
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
#define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
#define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
#define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
// Hotend Offsets
#if HOTENDS > 1
extern float hotend_offset[XYZ][HOTENDS];
#endif
// Software Endstops
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
#if HAS_SOFTWARE_ENDSTOPS
extern bool soft_endstops_enabled;
void clamp_to_software_endstops(float target[XYZ]);
#else
#define soft_endstops_enabled false
#define clamp_to_software_endstops(x) NOOP
#endif
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
void update_software_endstops(const AxisEnum axis);
#endif
#define MAX_COORDINATE_SYSTEMS 9
#if ENABLED(CNC_COORDINATE_SYSTEMS)
extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
bool select_coordinate_system(const int8_t _new);
#endif
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
void home_all_axes();
void report_current_position();
#if IS_KINEMATIC
#if ENABLED(HANGPRINTER)
extern float line_lengths[ABCD];
#else
extern float delta[ABC];
#endif
void inverse_kinematics(const float raw[XYZ]);
#endif
#if ENABLED(DELTA)
extern float delta_height,
delta_endstop_adj[ABC],
delta_radius,
delta_tower_angle_trim[ABC],
delta_tower[ABC][2],
delta_diagonal_rod,
delta_calibration_radius,
delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second,
delta_clip_start_height;
void recalc_delta_settings();
float delta_safe_distance_from_top();
// Macro to obtain the Z position of an individual tower
#define DELTA_Z(V,T) V[Z_AXIS] + SQRT( \
delta_diagonal_rod_2_tower[T] - HYPOT2( \
delta_tower[T][X_AXIS] - V[X_AXIS], \
delta_tower[T][Y_AXIS] - V[Y_AXIS] \
) \
)
#define DELTA_IK(V) do { \
delta[A_AXIS] = DELTA_Z(V, A_AXIS); \
delta[B_AXIS] = DELTA_Z(V, B_AXIS); \
delta[C_AXIS] = DELTA_Z(V, C_AXIS); \
}while(0)
#elif ENABLED(HANGPRINTER)
// Don't collect anchor positions in array because there are no A_x, D_x or D_y
extern float anchor_A_y,
anchor_A_z,
anchor_B_x,
anchor_B_y,
anchor_B_z,
anchor_C_x,
anchor_C_y,
anchor_C_z,
anchor_D_z,
delta_segments_per_second,
line_lengths_origin[ABCD];
void recalc_hangprinter_settings();
#define HANGPRINTER_IK(V) do { \
line_lengths[A_AXIS] = SQRT(sq(anchor_A_z - V[Z_AXIS]) \
+ sq(anchor_A_y - V[Y_AXIS]) \
+ sq( V[X_AXIS])); \
line_lengths[B_AXIS] = SQRT(sq(anchor_B_z - V[Z_AXIS]) \
+ sq(anchor_B_y - V[Y_AXIS]) \
+ sq(anchor_B_x - V[X_AXIS])); \
line_lengths[C_AXIS] = SQRT(sq(anchor_C_z - V[Z_AXIS]) \
+ sq(anchor_C_y - V[Y_AXIS]) \
+ sq(anchor_C_x - V[X_AXIS])); \
line_lengths[D_AXIS] = SQRT(sq( V[X_AXIS]) \
+ sq( V[Y_AXIS]) \
+ sq(anchor_D_z - V[Z_AXIS])); \
}while(0)
// Inverse kinematics at origin
#define HANGPRINTER_IK_ORIGIN(LL) do { \
LL[A_AXIS] = SQRT(sq(anchor_A_z) \
+ sq(anchor_A_y)); \
LL[B_AXIS] = SQRT(sq(anchor_B_z) \
+ sq(anchor_B_y) \
+ sq(anchor_B_x)); \
LL[C_AXIS] = SQRT(sq(anchor_C_z) \
+ sq(anchor_C_y) \
+ sq(anchor_C_x)); \
LL[D_AXIS] = anchor_D_z; \
}while(0)
#elif IS_SCARA
void forward_kinematics_SCARA(const float &a, const float &b);
#endif
#if ENABLED(G26_MESH_VALIDATION)
extern bool g26_debug_flag;
#elif ENABLED(AUTO_BED_LEVELING_UBL)
constexpr bool g26_debug_flag = false;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#define _GET_MESH_X(I) (bilinear_start[X_AXIS] + (I) * bilinear_grid_spacing[X_AXIS])
#define _GET_MESH_Y(J) (bilinear_start[Y_AXIS] + (J) * bilinear_grid_spacing[Y_AXIS])
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
#elif ENABLED(MESH_BED_LEVELING)
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
extern int bilinear_grid_spacing[2], bilinear_start[2];
extern float bilinear_grid_factor[2],
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
float bilinear_z_offset(const float raw[XYZ]);
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
typedef float (*element_2d_fn)(const uint8_t, const uint8_t);
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn);
#endif
#if HAS_LEVELING
bool leveling_is_valid();
void set_bed_leveling_enabled(const bool enable=true);
void reset_bed_level();
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh, const bool do_report=true);
#endif
#if HAS_BED_PROBE
extern float zprobe_zoffset;
bool set_probe_deployed(const bool deploy);
#ifdef Z_AFTER_PROBING
void move_z_after_probing();
#endif
enum ProbePtRaise : unsigned char {
PROBE_PT_NONE, // No raise or stow after run_z_probe
PROBE_PT_STOW, // Do a complete stow after run_z_probe
PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe
};
float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
#else
#define DEPLOY_PROBE()
#define STOW_PROBE()
#endif
#if ENABLED(HOST_KEEPALIVE_FEATURE)
extern MarlinBusyState busy_state;
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
#else
#define KEEPALIVE_STATE(n) NOOP
#endif
#if FAN_COUNT > 0
extern int16_t fanSpeeds[FAN_COUNT];
#if ENABLED(EXTRA_FAN_SPEED)
extern int16_t old_fanSpeeds[FAN_COUNT],
new_fanSpeeds[FAN_COUNT];
#endif
#if ENABLED(PROBING_FANS_OFF)
extern bool fans_paused;
extern int16_t paused_fanSpeeds[FAN_COUNT];
#endif
#endif
#if ENABLED(USE_CONTROLLER_FAN)
extern int controllerFanSpeed;
#endif
#if ENABLED(BARICUDA)
extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
extern bool filament_sensor; // Flag that filament sensor readings should control extrusion
extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75
filament_width_meas; // Measured filament diameter
extern uint8_t meas_delay_cm; // Delay distance
extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delay measurement
filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
extern int8_t did_pause_print;
extern AdvancedPauseMenuResponse advanced_pause_menu_response;
extern float filament_change_unload_length[EXTRUDERS],
filament_change_load_length[EXTRUDERS];
#endif
#if HAS_POWER_SWITCH
extern bool powersupply_on;
#define PSU_PIN_ON() do{ OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); powersupply_on = true; }while(0)
#define PSU_PIN_OFF() do{ OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; }while(0)
#endif
// Handling multiple extruders pins
extern uint8_t active_extruder;
#if ENABLED(MIXING_EXTRUDER)
extern float mixing_factor[MIXING_STEPPERS];
#endif
inline void set_current_from_destination() { COPY(current_position, destination); }
inline void set_destination_from_current() { COPY(destination, current_position); }
void prepare_move_to_destination();
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0);
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0);
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0);
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0);
#if ENABLED(ARC_SUPPORT)
void plan_arc(const float(&cart)[XYZE], const float(&offset)[2], const bool clockwise);
#endif
#define HAS_AXIS_UNHOMED_ERR ( \
ENABLED(Z_PROBE_ALLEN_KEY) \
|| ENABLED(Z_PROBE_SLED) \
|| HAS_PROBING_PROCEDURE \
|| HOTENDS > 1 \
|| ENABLED(NOZZLE_CLEAN_FEATURE) \
|| ENABLED(NOZZLE_PARK_FEATURE) \
|| (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \
|| HAS_M206_COMMAND \
) || ENABLED(NO_MOTION_BEFORE_HOMING)
#if HAS_AXIS_UNHOMED_ERR
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
#endif
/**
* position_is_reachable family of functions
*/
#if IS_KINEMATIC // (DELTA or SCARA)
#if IS_SCARA
extern const float L1, L2;
#endif
// Return true if the given point is within the printable area
inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
#elif ENABLED(HANGPRINTER)
// TODO: This is over simplified. Hangprinter's build volume is _not_ cylindrical.
return HYPOT2(rx, ry) <= sq(HANGPRINTER_PRINTABLE_RADIUS - inset);
#elif IS_SCARA
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return (
R2 <= sq(L1 + L2) - inset
#if MIDDLE_DEAD_ZONE_R > 0
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#endif
}
#if HAS_BED_PROBE
// Return true if the both nozzle and the probe can reach the given point.
// Note: This won't work on SCARA since the probe offset rotates with the arm.
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
&& position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
}
#endif
#else // CARTESIAN
// Return true if the given position is within the machine bounds.
inline bool position_is_reachable(const float &rx, const float &ry) {
// Add 0.001 margin to deal with float imprecision
return WITHIN(rx, X_MIN_POS - 0.001f, X_MAX_POS + 0.001f)
&& WITHIN(ry, Y_MIN_POS - 0.001f, Y_MAX_POS + 0.001f);
}
#if HAS_BED_PROBE
/**
* Return whether the given position is within the bed, and whether the nozzle
* can reach the position required to put the probe at the given position.
*
* Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
* nozzle must be be able to reach +10,-10.
*/
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
&& WITHIN(rx, MIN_PROBE_X - 0.001f, MAX_PROBE_X + 0.001f)
&& WITHIN(ry, MIN_PROBE_Y - 0.001f, MAX_PROBE_Y + 0.001f);
}
#endif
#endif // CARTESIAN
#if !HAS_BED_PROBE
FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
#endif
#endif // MARLIN_H
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。