代码拉取完成,页面将自动刷新
from PIL import Image
import numpy as np
import torch
import torch.nn.functional as F
import os
import glob
import tqdm
import cv2
import skimage.measure as measure
from model.fine_tune import BiResNet
from seg_system.application_config import ApplicationConfig
from cnn_visualization.misc_fucntion import save_class_activation_images, preprocess_image
from cnn_visualization.misc_fucntion import get_mask, get_and_save_nerve_gradient
from cnn_visualization.misc_fucntion import apply_color_map_on_image, apply_color_map_on_segmentation, \
apply_nerve_gradient_on_image
"""
When you need to code your own model using this script, you'd better change the module name (feature, classifier)
in CamExtractor()
Usage:
target_example=0 # the target class index
original_image=*
preprocessed_img=*
target_class=*
file_name_to_save=*
pretrained_model=*
grad_cam=GradCam(pretrained_model, target_layer=11)
cam=grad_cam.generate_cam(preprocessed_img, target_class)
# save the mask
save_class_activation_images(original_image, cam, file_name_to_save)
"""
# def generate_roi(cam, imgs, labels):
# """
# The function is aimed to find the cam region which we desire to crop
# :param features: the cnn features
# :return: a list of coordinates of each input tensor
# """
# size_upsample = (224, 224)
# heatmap = binary_img(cv2.resize(cam, size_upsample), threshold=0.5)
# max_region = findMaxConnectedComponent(heatmap)
# max_region = np.uint8(max_region)
# # find the index of the largest region
# contours, hierarchy = cv2.findContours(
# max_region, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# area = []
# for j in range(len(contours)):
# area.append(cv2.contourArea(contours[j]))
# max_idx = np.argmax(area)
# # get the min rect of the corresponding contour
# x, y, w, h = cv2.boundingRect(contours[max_idx])
# cx, cy = x + w // 2, y + h // 2
# max_len = max(w, h) // 2
# x1 = cx - max_len if (cx - max_len) >= 0 else 0
# x2 = cx + max_len if (cx + max_len) <= 224 else 224
# y1 = cy - max_len if (cy - max_len) >= 0 else 0
# y2 = cy + max_len if (cy + max_len) <= 224 else 224
# img = imgs[x1:x2, y1:y2]
# # img = img.resize_(imgs.shape)
# seg = labels[x1:x2, y1:y2]
# # seg = seg.resize_(imgs.shape)
# return img, seg
def binary_img(heatmap, threshold):
"""
performing a threshold on the cam heatmap to get the roi region
"""
if threshold < 1:
threshold = int(threshold * 255)
# _, binary_heatmap = cv2.threshold(heatmap, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
_, binary_heatmap = cv2.threshold(
heatmap, threshold, 255, cv2.THRESH_BINARY)
return binary_heatmap
class CamExtractor():
def __init__(self, model, target_layer):
self.model = model
self.target_layer = target_layer
self.gradients = None
def save_gradients(self, grad):
self.gradients = grad
def forward_pass_on_convolutions(self, x):
"""
Perform a forward pass on convolutions and hook the feature at given layer
:param x:
:return:
"""
conv_output = None
# self.model.features... One should change ("feature") the module name in the below line depending
# on the definition of your own model==============================================================================
# for name, module in self.model.features._modules.items(): # for VGG 16
# for name, module in list(self.model._modules.items())[:-1]:
for name, module in list(self.model._modules.items())[:-5]:
# print(name, "---", module)
x = module(x)
if str(name) == self.target_layer:
x.register_hook(self.save_gradients)
# save the convolution output on the target layer
conv_output = x
return conv_output, x
def forward_pass(self, x):
"""
Perform full forward pass on the network
:param x:
:return:
"""
# forward pass on the convolutions
conv_output, x = self.forward_pass_on_convolutions(x)
# level enchance block
batch_size, C, W, H = x.size()
xx = x.view(batch_size, C, W ** 2)
xx = (torch.bmm(xx, torch.transpose(xx, 1, 2)) / W ** 2)
xx = xx.view(batch_size, -1)
xx = F.normalize(torch.sign(xx) * torch.sqrt(torch.abs(xx) + 1e-5))
leb = self.model.fc_leb(xx)
# the fc1 output
x = self.model.avgpool(x)
x = torch.flatten(x, 1)
x1 = self.model.fc1(x)
# the LEB output
# x = x.view(batch_size, C)
x = x + x * leb
x2 = self.model.fc2(x)
out = torch.cat((x1, x2), dim=1)
out = self.model.classifier(out)
return conv_output, out
class GradCam():
"""
Generate class activatin map
"""
def __init__(self, model, target_layer):
self.model = model
self.model.eval()
self.extractor = CamExtractor(self.model, target_layer)
def generate_cam(self, input_image, target_class=None):
"""
Full forward pass;
conv_output is the specific output of convolutions
model_output is the final output of the model(1,1000)
"""
conv_output, model_output = self.extractor.forward_pass(input_image)
if target_class is None:
target_class = np.argmax(model_output.data.cpu().numpy())
# target for backprop
one_hot = torch.FloatTensor(1, model_output.size()[-1]).zero_()
if ApplicationConfig.SystemConfig.GRADE_USE_CUDA:
one_hot = one_hot.to(ApplicationConfig.SystemConfig.DEVICE)
one_hot[0][target_class] = 1
# zero gradients------------------------------------------------------------------
# self.model.features.zero_grad()
# self.model.classifier.zero_grad()
self.model.zero_grad()
# backward pass with specific target----------------------------------------------
model_output.backward(gradient=one_hot, retain_graph=True)
# get hooked gradients
guided_gradients = self.extractor.gradients.data.cpu().numpy()[0]
target = conv_output.data.cpu().numpy()[0]
# get weights form gradients
weights = np.mean(guided_gradients, axis=(1, 2))
cam = np.ones(target.shape[1:], dtype=np.float32)
for i, w in enumerate(weights):
cam += w * target[i, :, :]
cam = np.maximum(cam, 0)
# Normalize to 0~1
cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam))
cam = np.uint8(cam * 255)
cam = np.uint8(Image.fromarray(cam).resize(
(input_image.shape[2], input_image.shape[3]), Image.ANTIALIAS)) / 255
# ^ I am extremely unhappy with this line. Originally resizing was done in cv2 which
# supports resizing numpy matrices with antialiasing, however,
# when I moved the repository to PIL, this option was out of the window.
# So, in order to use resizing with ANTIALIAS feature of PIL,
# I briefly convert matrix to PIL image and then back.
# If there is a more beautiful way, do not hesitate to send a PR.
# You can also use the code below instead of the code line above, suggested by @ ptschandl
# from scipy.ndimage.interpolation import zoom
# cam = zoom(cam, np.array(input_image[0].shape[1:])/np.array(cam.shape))
return cam
m_stage1 = None # 减少模型多次导入
def load_model():
global m_stage1
if m_stage1:
return m_stage1
if ApplicationConfig.SystemConfig.GRADE_USE_CUDA:
model = torch.load('./checkpoint/BANet18-fold5.pth',
map_location=ApplicationConfig.SystemConfig.DEVICE)
m_stage1 = model
else:
model = torch.load('./checkpoint/BANet18-fold5.pth',
map_location=torch.device('cpu'))
m_stage1 = model
# model = BiResNet(num_class=5, model_name='resnet34').cuda()
# model.load_state_dict(torch.load("/home/imed/Research/TortuosityGrading/checkpoint/BANet34-DR.pkl"))
return model
def generate_heatmap(img, seg):
"""
Obtain heatmap to visualize, and obtain roi to input it to the stage2
:param img: numpy.ndarray image
:param seg: numpy.ndarray segmentation
:return: roi, only_heatmap_on_seg, nerve_gradient_on_img
'only_heatmap_on_seg': heatmap overlayed in segmentated corneal nerves
'nerve_gradient_on_img': heatmap overlayed only in ROIs (nerves in the roi)
'heatmap_on_image': the heatmap overlayed on original CCM image
"""
model = load_model()
feature_blobs = []
image = Image.fromarray(img)
input_image = preprocess_image(image, resize=304)
segmentation = Image.fromarray(seg)
input_seg = preprocess_image(segmentation, resize=304)
if ApplicationConfig.SystemConfig.GRADE_USE_CUDA:
input_image = input_image.to(ApplicationConfig.SystemConfig.DEVICE)
input_seg = input_seg.to(ApplicationConfig.SystemConfig.DEVICE)
input = torch.cat((input_image, input_seg, input_image), dim=1)
target_class = None
threshold = 0.7
grad_cam = GradCam(model, target_layer='layer4')
# generate cam mask
cam = grad_cam.generate_cam(input, target_class)
cam = cv2.resize(cam, image.size) # (384,384)
# generate heatmap
heatmap, heatmap_on_image = apply_color_map_on_image(image, cam, "jet")
original_img = img
# get the roi, which will be used as one of the inputs of DeepGrading
region, mask = get_mask(cam, original_img, threshold)
seg_map = seg
seg_region, seg_mask = get_mask(cam, seg_map, threshold)
# nerve gradient
seg_map = np.uint8(seg_map / np.max(seg_map))
only_heatmap_on_seg = apply_color_map_on_segmentation(seg_map, cam, 'jet')
nerve_gradient_on_img = apply_nerve_gradient_on_image(
original_img, seg_map, cam, 'jet')
return heatmap_on_image, seg_region, only_heatmap_on_seg, nerve_gradient_on_img
# if __name__ == '__main__':
# img_file = "./test_image/original_img.jpg"
# seg_file = "./test_image/segmentation.png"
# img = cv2.imread(img_file, flags=-1)
# seg = cv2.imread(seg_file, flags=-1)
# generate_heatmap(img, seg)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。