代码拉取完成,页面将自动刷新
import cv2
import torch
from torchvision import transforms
from PIL import Image, ImageOps
import numpy as np
import scipy.misc as misc
import os
import glob
import csv
from seg_system.application_config import ApplicationConfig
seed = 0
np.random.seed(seed)
torch.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
# torch.backends.cudnn.determinstic = True
# torch.backends.cudnn.benchmark = False
m_stage2 = None # 减少模型多次导入
def load_net():
global m_stage2
if m_stage2:
return m_stage2
# torch.nn.Module.dump_patches = True
if ApplicationConfig.SystemConfig.GRADE_USE_CUDA:
net = torch.load("./checkpoint/DeepGrading18-fold5-0.8564.pth",
map_location=ApplicationConfig.SystemConfig.DEVICE)
m_stage2 = net
else:
net = torch.load("./checkpoint/DeepGrading18-fold5-0.8564.pth",
map_location=torch.device('cpu'))
m_stage2 = net
return net
def predict(img, seg, roi):
net = load_net()
net.eval()
preds, gts = [], []
transform_test = transforms.Compose([
transforms.Resize((304, 304)),
transforms.ToTensor(),
transforms.Normalize(mean=0.339, std=0.138),
])
transform_roi = transforms.Compose([
transforms.Resize((112, 112)),
transforms.ToTensor(),
transforms.Normalize(mean=0.339, std=0.138)
])
with torch.no_grad():
img = Image.fromarray(img)
seg = Image.fromarray(seg)
roi = Image.fromarray(roi)
img = transform_test(img)
img = img.unsqueeze_(0)
seg = transform_test(seg)
seg = seg.unsqueeze_(0)
roi = transform_roi(roi)
roi = roi.unsqueeze_(0)
image = torch.cat((img, seg, img), dim=1) # .cuda()
roi = torch.cat((roi, roi), dim=1) # .cuda()
if ApplicationConfig.SystemConfig.GRADE_USE_CUDA:
image = image.to(ApplicationConfig.SystemConfig.DEVICE)
roi = roi.to(ApplicationConfig.SystemConfig.DEVICE)
x1, x2, roi, predictions = net(image, roi)
probs = torch.softmax(predictions.detach(), dim=1)
probs = probs.data.cpu().numpy()
predictions = torch.argmax(predictions, dim=1)
predictions = predictions.data.cpu().numpy()
return predictions, probs
# if __name__ == '__main__':
# '''
# Note:
# You should only input a numpy array of 'img', 'seg', 'roi' to the grading function 'predict'.
# The following shows an example of how to use this function
# '''
# img_file = "./test_image/original_img.jpg"
# seg_file = "./test_image/segmentation.png"
# roi_file = "./test_image/roi.png"
# img = cv2.imread(img_file, flags=-1)
# seg = cv2.imread(seg_file, flags=-1)
# roi = cv2.imread(roi_file, flags=-1)
# # the image opened by 'cv2' holds in 'numpy arry'
# predictions, probs = predict(img, seg, roi)
# print(predictions, probs)
#
# # The predictions are as follows:
# # [1] [[0.00171472 0.66045445 0.33193085 0.00589993]]
# # [1] is the predicted tortuosity level, you can obtain the value of the level by using:
# # level = predictions[0]
# # [[0.00171472 0.66045445 0.33193085 0.00589993]] are represents the predicted probabilities of each level,
# # the number of torutsoity level is 4, you can get the probability of each tortuosity level by using:
# # probabilities=probs[0]
# # The tortuosity from level 1 to level 4 are 0.0017, 0.6604, 0.3319, and 0.0059, respectively.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。