代码拉取完成,页面将自动刷新
from numpy import *
import numpy as np
def loadDataSet(filename):
dataMat = []
fr = open(filename)
#print(fr)
for line in fr.readlines():
curLine = line.split('\t')
fltLine = map(float,curLine)
fltLine=list(fltLine)##python 2 and 3 difference
dataMat.append(fltLine)
return dataMat
# def loadDataSet(filename):
# numFeat = len(open(filename).readline().split('\t'))#-1
# dataMat = [];#labelMat = []
# fr = open(filename)
# #print("fr\n: ",fr.readlines())
# for line in fr.readlines():
# lineArr = []
# curLine = line.strip().split('\t')
# #print("numFeat: ",numFeat)
# for i in range(numFeat):
# lineArr.append(float(curLine[i]))
# fltLine = map(float, lineArr)
# dataMat.append(fltLine)
# #print(dataMat)
# #labelMat.append(float(curLine[-1]))
# return dataMat#,labelMat
def binSplitDataSet(dataSet,feature,value):
#dataSet = array(dataSet)
#dataSet = np.array(dataSet)
#print "array: ",dataSet
# tmp = dataSet[:,feature]
# print("tmp\n",tmp)
mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:]
mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0], :]
#remove [0],then run soothly.
return mat0,mat1
def regLeaf(dataSet):#returns the value used for each leaf
return mean(dataSet[:,-1])
def regErr(dataSet):
return var(dataSet[:,-1]) * shape(dataSet)[0]
def linearSolve(dataSet): #helper function used in two places
m,n = shape(dataSet)
X = mat(ones((m,n))); Y = mat(ones((m,1)))#create a copy of data with 1 in 0th postion
X[:,1:n] = dataSet[:,0:n-1]; Y = dataSet[:,-1]#and strip out Y
xTx = X.T*X
if linalg.det(xTx) == 0.0:
raise NameError('This matrix is singular, cannot do inverse,\n\
try increasing the second value of ops')
ws = xTx.I * (X.T * Y)
return ws,X,Y
def modelLeaf(dataSet):#create linear model and return coeficients
ws,X,Y = linearSolve(dataSet)
return ws
def modelErr(dataSet):
ws,X,Y = linearSolve(dataSet)
yHat = X * ws
return sum(pow(Y - yHat,2))
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
tolS = ops[0]; tolN = ops[1]
#if all the target variables are the same value: quit and return value
if len(set(dataSet[:,-1].T.tolist()[0])) == 1: #exit cond 1
return None, leafType(dataSet)
else:
m,n = shape(dataSet)
#print("m= ",m,"n= ",n)
#the choice of the best feature is driven by Reduction in RSS error from mean
S = errType(dataSet)
bestS = inf; bestIndex = 0; bestValue = 0
for featIndex in range(n-1):
#print("featIndex: ",featIndex)
#print("(dataSet[:,featIndex].T.A.tolist())[0]: ",(dataSet[:,featIndex].T.A.tolist())[0])
for splitVal in set((dataSet[:,featIndex].T.A.tolist())[0]):#set(dataSet[:,featIndex]):
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
#print("\nsplitVal:",splitVal,"mat0: ",mat0,"mat1: ",mat1)
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
continue
newS = errType(mat0) + errType(mat1)
if newS < bestS:
bestIndex = featIndex
bestValue = splitVal
bestS = newS
#if the decrease (S-bestS) is less than a threshold don't do the split
if (S - bestS) < tolS:
return None, leafType(dataSet) #exit cond 2
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): #exit cond 3
return None, leafType(dataSet)
return bestIndex,bestValue#returns the best feature to split on
#and the value used for that split
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):#assume dataSet is NumPy Mat so we can array filtering
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)#choose the best split
if feat == None: return val #if the splitting hit a stop condition return val
retTree = {}
retTree['spInd'] = feat
retTree['spVal'] = val
lSet, rSet = binSplitDataSet(dataSet, feat, val)
retTree['left'] = createTree(lSet, leafType, errType, ops)
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree
def isTree(obj):
return (type(obj).__name__=='dict')
def getMean(tree):
if isTree(tree['right']):tree['right'] = getMean(tree['right'])
if isTree(tree['left']):tree['left'] = getMean(tree['left'])
return (tree['left']+tree['right'])/2.0
def prune(tree, testData):
if shape(testData)[0] == 0: return getMean(tree) #if we have no test data collapse the tree
if (isTree(tree['right']) or isTree(tree['left'])):#if the branches are not trees try to prune them
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)
if isTree(tree['right']): tree['right'] = prune(tree['right'], rSet)
#if they are now both leafs, see if we can merge them
if not isTree(tree['left']) and not isTree(tree['right']):
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) +\
sum(power(rSet[:,-1] - tree['right'],2))
treeMean = (tree['left']+tree['right'])/2.0
errorMerge = sum(power(testData[:,-1] - treeMean,2))
if errorMerge < errorNoMerge:
print ("merging")
return treeMean
else: return tree
else: return tree
def linearSolve(dataSet):
m,n = shape(dataSet)
X = mat(ones((m,n)));Y = mat(ones((m,1)))
X[:,1:n] = dataSet[:,0:n-1];Y = dataSet[:,-1]
xTx = X.T*X
if linalg.det(xTx) == 0.0:
raise NameError('This matrix is sigular,cannot do inverse,\n try increasing the second value of ops')
ws = xTx.I*(X.T*Y)
return ws,X,Y
def modelLeaf(dataSet):
ws,X,Y = linearSolve(dataSet)
return ws
def modelErr(dataSet):
ws,X,Y = linearSolve(dataSet)
yHat = X*ws
#print(yHat)
return sum(power(Y-yHat,2))
def regTreeEval(model,inDat):
return float(model)
def modelTreeEval(model,inDat):
n = shape(inDat)[1]
X = mat(ones((1,n+1)))
X[:,1:n+1] = inDat
return float(X*model)
def treeForeCast(tree,inData,modelEval=regTreeEval):
if not isTree(tree): return modelEval(tree,inData)
if inData[tree['spInd']]>tree['spVal']:
if isTree(tree['left']):
return treeForeCast(tree['left'],inData,modelEval)
else:
return modelEval(tree['left'],inData)
else:
if isTree(tree['right']):
return treeForeCast(tree['right'],inData,modelEval)
else:
return modelEval(tree['right'],inData)
def createForeCast(tree,testData,modelEval=regTreeEval):
m=len(testData)
yHat = mat(zeros((m,1)))
for i in range(m):
yHat[i,0] = treeForeCast(tree,mat(testData[i]),modelEval)
return yHat
from numpy import *
from tkinter import *
import regTrees
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
def reDraw(tolS, tolN):
reDraw.f.clf() # clear the figure
reDraw.a = reDraw.f.add_subplot(111)
if chkBtnVar.get():
if tolN < 2: tolN = 2
myTree = regTrees.createTree(reDraw.rawDat, regTrees.modelLeaf, \
regTrees.modelErr, (tolS, tolN))
yHat = regTrees.createForeCast(myTree, reDraw.testDat,regTrees.modelTreeEval)
else:
myTree = regTrees.createTree(reDraw.rawDat, ops=(tolS, tolN))
yHat = regTrees.createForeCast(myTree, reDraw.testDat)
reDraw.a.scatter(reDraw.rawDat[:, 0], reDraw.rawDat[:, 1], s=5) # use scatter for data set
reDraw.a.plot(reDraw.testDat, yHat, linewidth=2.0) # use plot for yHat
reDraw.canvas.show()
def getInputs():
try:
tolN = int(tolNentry.get())
except:
tolN = 10
print("enter Integer for tolN")
tolNentry.delete(0, END)
tolNentry.insert(0, '10')
try:
tolS = float(tolSentry.get())
except:
tolS = 1.0
print("enter Float for tolS")
tolSentry.delete(0, END)
tolSentry.insert(0, '1.0')
return tolN, tolS
def drawNewTree():
tolN, tolS = getInputs() # get values from Entry boxes
reDraw(tolS, tolN)
if __name__ == "__main__":
import regTrees
testMat = mat(eye(4))
print ("\ntestData:\n",testMat)
mat0,mat1 = binSplitDataSet(testMat,2,0.5)
print ("\nmat0:\n",mat0)
print ("mat1:\n",mat1)
myDat = regTrees.loadDataSet('ex00.txt')
myDat = mat(myDat)
print("\ncreateTree for ex00:\n", regTrees.createTree(myDat))
myDat = regTrees.loadDataSet('ex0.txt')
myDat = mat(myDat)
print ("\ncreateTree for ex0:\n",regTrees.createTree(myDat))
####################prepuning
print("\nPrepruning\n###########")
print ("\nOps(0,1):\n",createTree(myDat,ops=(0,1)))
#########################ex2
myDat2 = loadDataSet('ex2.txt')
myDat2 = mat(myDat2)
print ("\nmyData2 : \n",createTree(myDat2))
print("\nmyData2 : ops=(1000,4) \n", createTree(myDat2,ops=(1000,4)))
####################postpuning
myDat2 = loadDataSet('ex2.txt')
myMat2 = mat(myDat2)
myTree = createTree(myMat2,ops=(0,1))
myDataTest = loadDataSet('ex2test.txt')
myMat2Test = mat(myDataTest)
print("\nPruning:\n",prune(myTree,myMat2Test))
####
print("\nModel Tree:\n")
myMat2 = mat(loadDataSet('exp2.txt'))
print(createTree(myMat2, modelLeaf, modelErr, (1, 10)))
#############
trainMat = mat(loadDataSet('bikeSpeedVsIq_train.txt'))
testMat = mat(loadDataSet('bikeSpeedVsIq_test.txt'))
print("\nCreate RegTree:")
myTree = createTree(trainMat,ops=(1,20))
print(myTree)
yHat = createForeCast(myTree,testMat[:,0])
print("\ncorrcoef(yHat,testMat[:,1],rowvar=0)[0,1]: \n", corrcoef(yHat, testMat[:,1], rowvar=0)[0,1])
#######
print("\nCreate ModelTree:\n")
myTree = createTree(trainMat,modelLeaf,modelErr,(1,20))
yHat = createForeCast(myTree,testMat[:,0],modelTreeEval)
print("\ncorrcoef(yHat,testMat[:,1],rowvar=0)[0,1]: \n", corrcoef(yHat, testMat[:, 1], rowvar=0)[0, 1])
########
print("\nlineSolve:\n")
ws,X,Y = linearSolve(trainMat)
print("WS:\n",ws)
for i in range(shape(testMat)[0]):
yHat[i] = testMat[i,0]*ws[1,0]+ws[0,0]
print("\ncorrcoef(yHat,testMat[:,1],rowvar=0)[0,1]: \n",corrcoef(yHat,testMat[:,1],rowvar=0)[0,1])
##################################################
print("\n######################GUI:####################\n")
root = Tk()
reDraw.f = Figure(figsize=(5, 4), dpi=100) # create canvas
reDraw.canvas = FigureCanvasTkAgg(reDraw.f, master=root)
reDraw.canvas.show()
reDraw.canvas.get_tk_widget().grid(row=0, columnspan=3)
Label(root, text="tolN").grid(row=1, column=0)
tolNentry = Entry(root)
tolNentry.grid(row=1, column=1)
tolNentry.insert(0, '10')
Label(root, text="tolS").grid(row=2, column=0)
tolSentry = Entry(root)
tolSentry.grid(row=2, column=1)
tolSentry.insert(0, '1.0')
Button(root, text="ReDraw", command=drawNewTree).grid(row=1, column=2, rowspan=3)
chkBtnVar = IntVar()
chkBtn = Checkbutton(root, text="Model Tree", variable=chkBtnVar)
chkBtn.grid(row=3, column=0, columnspan=2)
reDraw.rawDat = mat(regTrees.loadDataSet('sine.txt'))
reDraw.testDat = arange(min(reDraw.rawDat[:, 0]), max(reDraw.rawDat[:, 0]), 0.01)
reDraw(1.0, 10)
root.mainloop()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。