加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
models.py 19.45 KB
一键复制 编辑 原始数据 按行查看 历史
import torch
import torch.nn as nn
from torch.nn import init
import math
import numpy as np
try:
from networks.resample2d_package.resample2d import Resample2d
from networks.channelnorm_package.channelnorm import ChannelNorm
from networks import FlowNetC
from networks import FlowNetS
from networks import FlowNetSD
from networks import FlowNetFusion
from networks.submodules import *
except:
from .networks.resample2d_package.resample2d import Resample2d
from .networks.channelnorm_package.channelnorm import ChannelNorm
from .networks import FlowNetC
from .networks import FlowNetS
from .networks import FlowNetSD
from .networks import FlowNetFusion
from .networks.submodules import *
'Parameter count = 162,518,834'
class FlowNet2(nn.Module):
def __init__(self, args, batchNorm=False, div_flow = 20.):
super(FlowNet2,self).__init__()
self.batchNorm = batchNorm
self.div_flow = div_flow
self.rgb_max = args.rgb_max
self.args = args
self.channelnorm = ChannelNorm()
# First Block (FlowNetC)
self.flownetc = FlowNetC.FlowNetC(args, batchNorm=self.batchNorm)
self.upsample1 = nn.Upsample(scale_factor=4, mode='bilinear')
if args.fp16:
self.resample1 = nn.Sequential(
tofp32(),
Resample2d(),
tofp16())
else:
self.resample1 = Resample2d()
# Block (FlowNetS1)
self.flownets_1 = FlowNetS.FlowNetS(args, batchNorm=self.batchNorm)
self.upsample2 = nn.Upsample(scale_factor=4, mode='bilinear')
if args.fp16:
self.resample2 = nn.Sequential(
tofp32(),
Resample2d(),
tofp16())
else:
self.resample2 = Resample2d()
# Block (FlowNetS2)
self.flownets_2 = FlowNetS.FlowNetS(args, batchNorm=self.batchNorm)
# Block (FlowNetSD)
self.flownets_d = FlowNetSD.FlowNetSD(args, batchNorm=self.batchNorm)
self.upsample3 = nn.Upsample(scale_factor=4, mode='nearest')
self.upsample4 = nn.Upsample(scale_factor=4, mode='nearest')
if args.fp16:
self.resample3 = nn.Sequential(
tofp32(),
Resample2d(),
tofp16())
else:
self.resample3 = Resample2d()
if args.fp16:
self.resample4 = nn.Sequential(
tofp32(),
Resample2d(),
tofp16())
else:
self.resample4 = Resample2d()
# Block (FLowNetFusion)
self.flownetfusion = FlowNetFusion.FlowNetFusion(args, batchNorm=self.batchNorm)
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m.bias is not None:
init.uniform_(m.bias)
init.xavier_uniform_(m.weight)
if isinstance(m, nn.ConvTranspose2d):
if m.bias is not None:
init.uniform_(m.bias)
init.xavier_uniform_(m.weight)
# init_deconv_bilinear(m.weight)
def init_deconv_bilinear(self, weight):
f_shape = weight.size()
heigh, width = f_shape[-2], f_shape[-1]
f = np.ceil(width/2.0)
c = (2 * f - 1 - f % 2) / (2.0 * f)
bilinear = np.zeros([heigh, width])
for x in range(width):
for y in range(heigh):
value = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
bilinear[x, y] = value
min_dim = min(f_shape[0], f_shape[1])
weight.data.fill_(0.)
for i in range(min_dim):
weight.data[i,i,:,:] = torch.from_numpy(bilinear)
return
def forward(self, inputs):
rgb_mean = inputs.contiguous().view(inputs.size()[:2]+(-1,)).mean(dim=-1).view(inputs.size()[:2] + (1,1,1,))
x = (inputs - rgb_mean) / self.rgb_max
x1 = x[:,:,0,:,:]
x2 = x[:,:,1,:,:]
x = torch.cat((x1,x2), dim = 1)
# flownetc
flownetc_flow2 = self.flownetc(x)[0]
flownetc_flow = self.upsample1(flownetc_flow2*self.div_flow)
# warp img1 to img0; magnitude of diff between img0 and and warped_img1,
resampled_img1 = self.resample1(x[:,3:,:,:], flownetc_flow)
diff_img0 = x[:,:3,:,:] - resampled_img1
norm_diff_img0 = self.channelnorm(diff_img0)
# concat img0, img1, img1->img0, flow, diff-mag ;
concat1 = torch.cat((x, resampled_img1, flownetc_flow/self.div_flow, norm_diff_img0), dim=1)
# flownets1
flownets1_flow2 = self.flownets_1(concat1)[0]
flownets1_flow = self.upsample2(flownets1_flow2*self.div_flow)
# warp img1 to img0 using flownets1; magnitude of diff between img0 and and warped_img1
resampled_img1 = self.resample2(x[:,3:,:,:], flownets1_flow)
diff_img0 = x[:,:3,:,:] - resampled_img1
norm_diff_img0 = self.channelnorm(diff_img0)
# concat img0, img1, img1->img0, flow, diff-mag
concat2 = torch.cat((x, resampled_img1, flownets1_flow/self.div_flow, norm_diff_img0), dim=1)
# flownets2
flownets2_flow2 = self.flownets_2(concat2)[0]
flownets2_flow = self.upsample4(flownets2_flow2 * self.div_flow)
norm_flownets2_flow = self.channelnorm(flownets2_flow)
diff_flownets2_flow = self.resample4(x[:,3:,:,:], flownets2_flow)
# if not diff_flownets2_flow.volatile:
# diff_flownets2_flow.register_hook(save_grad(self.args.grads, 'diff_flownets2_flow'))
diff_flownets2_img1 = self.channelnorm((x[:,:3,:,:]-diff_flownets2_flow))
# if not diff_flownets2_img1.volatile:
# diff_flownets2_img1.register_hook(save_grad(self.args.grads, 'diff_flownets2_img1'))
# flownetsd
flownetsd_flow2 = self.flownets_d(x)[0]
flownetsd_flow = self.upsample3(flownetsd_flow2 / self.div_flow)
norm_flownetsd_flow = self.channelnorm(flownetsd_flow)
diff_flownetsd_flow = self.resample3(x[:,3:,:,:], flownetsd_flow)
# if not diff_flownetsd_flow.volatile:
# diff_flownetsd_flow.register_hook(save_grad(self.args.grads, 'diff_flownetsd_flow'))
diff_flownetsd_img1 = self.channelnorm((x[:,:3,:,:]-diff_flownetsd_flow))
# if not diff_flownetsd_img1.volatile:
# diff_flownetsd_img1.register_hook(save_grad(self.args.grads, 'diff_flownetsd_img1'))
# concat img1 flownetsd, flownets2, norm_flownetsd, norm_flownets2, diff_flownetsd_img1, diff_flownets2_img1
concat3 = torch.cat((x[:,:3,:,:], flownetsd_flow, flownets2_flow, norm_flownetsd_flow, norm_flownets2_flow, diff_flownetsd_img1, diff_flownets2_img1), dim=1)
flownetfusion_flow = self.flownetfusion(concat3)
# if not flownetfusion_flow.volatile:
# flownetfusion_flow.register_hook(save_grad(self.args.grads, 'flownetfusion_flow'))
return flownetfusion_flow
class FlowNet2C(FlowNetC.FlowNetC):
def __init__(self, args, batchNorm=False, div_flow=20):
super(FlowNet2C,self).__init__(args, batchNorm=batchNorm, div_flow=20)
self.rgb_max = args.rgb_max
def forward(self, inputs):
rgb_mean = inputs.contiguous().view(inputs.size()[:2]+(-1,)).mean(dim=-1).view(inputs.size()[:2] + (1,1,1,))
x = (inputs - rgb_mean) / self.rgb_max
x1 = x[:,:,0,:,:]
x2 = x[:,:,1,:,:]
# FlownetC top input stream
out_conv1a = self.conv1(x1)
out_conv2a = self.conv2(out_conv1a)
out_conv3a = self.conv3(out_conv2a)
# FlownetC bottom input stream
out_conv1b = self.conv1(x2)
out_conv2b = self.conv2(out_conv1b)
out_conv3b = self.conv3(out_conv2b)
# Merge streams
out_corr = self.corr(out_conv3a, out_conv3b) # False
out_corr = self.corr_activation(out_corr)
# Redirect top input stream and concatenate
out_conv_redir = self.conv_redir(out_conv3a)
in_conv3_1 = torch.cat((out_conv_redir, out_corr), 1)
# Merged conv layers
out_conv3_1 = self.conv3_1(in_conv3_1)
out_conv4 = self.conv4_1(self.conv4(out_conv3_1))
out_conv5 = self.conv5_1(self.conv5(out_conv4))
out_conv6 = self.conv6_1(self.conv6(out_conv5))
flow6 = self.predict_flow6(out_conv6)
flow6_up = self.upsampled_flow6_to_5(flow6)
out_deconv5 = self.deconv5(out_conv6)
concat5 = torch.cat((out_conv5,out_deconv5,flow6_up),1)
flow5 = self.predict_flow5(concat5)
flow5_up = self.upsampled_flow5_to_4(flow5)
out_deconv4 = self.deconv4(concat5)
concat4 = torch.cat((out_conv4,out_deconv4,flow5_up),1)
flow4 = self.predict_flow4(concat4)
flow4_up = self.upsampled_flow4_to_3(flow4)
out_deconv3 = self.deconv3(concat4)
concat3 = torch.cat((out_conv3_1,out_deconv3,flow4_up),1)
flow3 = self.predict_flow3(concat3)
flow3_up = self.upsampled_flow3_to_2(flow3)
out_deconv2 = self.deconv2(concat3)
concat2 = torch.cat((out_conv2a,out_deconv2,flow3_up),1)
flow2 = self.predict_flow2(concat2)
if self.training:
return flow2,flow3,flow4,flow5,flow6
else:
return self.upsample1(flow2*self.div_flow)
class FlowNet2S(FlowNetS.FlowNetS):
def __init__(self, args, batchNorm=False, div_flow=20):
super(FlowNet2S,self).__init__(args, input_channels = 6, batchNorm=batchNorm)
self.rgb_max = args.rgb_max
self.div_flow = div_flow
def forward(self, inputs):
rgb_mean = inputs.contiguous().view(inputs.size()[:2]+(-1,)).mean(dim=-1).view(inputs.size()[:2] + (1,1,1,))
x = (inputs - rgb_mean) / self.rgb_max
x = torch.cat( (x[:,:,0,:,:], x[:,:,1,:,:]), dim = 1)
out_conv1 = self.conv1(x)
out_conv2 = self.conv2(out_conv1)
out_conv3 = self.conv3_1(self.conv3(out_conv2))
out_conv4 = self.conv4_1(self.conv4(out_conv3))
out_conv5 = self.conv5_1(self.conv5(out_conv4))
out_conv6 = self.conv6_1(self.conv6(out_conv5))
flow6 = self.predict_flow6(out_conv6)
flow6_up = self.upsampled_flow6_to_5(flow6)
out_deconv5 = self.deconv5(out_conv6)
concat5 = torch.cat((out_conv5,out_deconv5,flow6_up),1)
flow5 = self.predict_flow5(concat5)
flow5_up = self.upsampled_flow5_to_4(flow5)
out_deconv4 = self.deconv4(concat5)
concat4 = torch.cat((out_conv4,out_deconv4,flow5_up),1)
flow4 = self.predict_flow4(concat4)
flow4_up = self.upsampled_flow4_to_3(flow4)
out_deconv3 = self.deconv3(concat4)
concat3 = torch.cat((out_conv3,out_deconv3,flow4_up),1)
flow3 = self.predict_flow3(concat3)
flow3_up = self.upsampled_flow3_to_2(flow3)
out_deconv2 = self.deconv2(concat3)
concat2 = torch.cat((out_conv2,out_deconv2,flow3_up),1)
flow2 = self.predict_flow2(concat2)
if self.training:
return flow2,flow3,flow4,flow5,flow6
else:
return self.upsample1(flow2*self.div_flow)
class FlowNet2SD(FlowNetSD.FlowNetSD):
def __init__(self, args, batchNorm=False, div_flow=20):
super(FlowNet2SD,self).__init__(args, batchNorm=batchNorm)
self.rgb_max = args.rgb_max
self.div_flow = div_flow
def forward(self, inputs):
rgb_mean = inputs.contiguous().view(inputs.size()[:2]+(-1,)).mean(dim=-1).view(inputs.size()[:2] + (1,1,1,))
x = (inputs - rgb_mean) / self.rgb_max
x = torch.cat( (x[:,:,0,:,:], x[:,:,1,:,:]), dim = 1)
out_conv0 = self.conv0(x)
out_conv1 = self.conv1_1(self.conv1(out_conv0))
out_conv2 = self.conv2_1(self.conv2(out_conv1))
out_conv3 = self.conv3_1(self.conv3(out_conv2))
out_conv4 = self.conv4_1(self.conv4(out_conv3))
out_conv5 = self.conv5_1(self.conv5(out_conv4))
out_conv6 = self.conv6_1(self.conv6(out_conv5))
flow6 = self.predict_flow6(out_conv6)
flow6_up = self.upsampled_flow6_to_5(flow6)
out_deconv5 = self.deconv5(out_conv6)
concat5 = torch.cat((out_conv5,out_deconv5,flow6_up),1)
out_interconv5 = self.inter_conv5(concat5)
flow5 = self.predict_flow5(out_interconv5)
flow5_up = self.upsampled_flow5_to_4(flow5)
out_deconv4 = self.deconv4(concat5)
concat4 = torch.cat((out_conv4,out_deconv4,flow5_up),1)
out_interconv4 = self.inter_conv4(concat4)
flow4 = self.predict_flow4(out_interconv4)
flow4_up = self.upsampled_flow4_to_3(flow4)
out_deconv3 = self.deconv3(concat4)
concat3 = torch.cat((out_conv3,out_deconv3,flow4_up),1)
out_interconv3 = self.inter_conv3(concat3)
flow3 = self.predict_flow3(out_interconv3)
flow3_up = self.upsampled_flow3_to_2(flow3)
out_deconv2 = self.deconv2(concat3)
concat2 = torch.cat((out_conv2,out_deconv2,flow3_up),1)
out_interconv2 = self.inter_conv2(concat2)
flow2 = self.predict_flow2(out_interconv2)
if self.training:
return flow2,flow3,flow4,flow5,flow6
else:
return self.upsample1(flow2*self.div_flow)
class FlowNet2CS(nn.Module):
def __init__(self, args, batchNorm=False, div_flow = 20.):
super(FlowNet2CS,self).__init__()
self.batchNorm = batchNorm
self.div_flow = div_flow
self.rgb_max = args.rgb_max
self.args = args
self.channelnorm = ChannelNorm()
# First Block (FlowNetC)
self.flownetc = FlowNetC.FlowNetC(args, batchNorm=self.batchNorm)
self.upsample1 = nn.Upsample(scale_factor=4, mode='bilinear')
if args.fp16:
self.resample1 = nn.Sequential(
tofp32(),
Resample2d(),
tofp16())
else:
self.resample1 = Resample2d()
# Block (FlowNetS1)
self.flownets_1 = FlowNetS.FlowNetS(args, batchNorm=self.batchNorm)
self.upsample2 = nn.Upsample(scale_factor=4, mode='bilinear')
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m.bias is not None:
init.uniform(m.bias)
init.xavier_uniform(m.weight)
if isinstance(m, nn.ConvTranspose2d):
if m.bias is not None:
init.uniform(m.bias)
init.xavier_uniform(m.weight)
# init_deconv_bilinear(m.weight)
def forward(self, inputs):
rgb_mean = inputs.contiguous().view(inputs.size()[:2]+(-1,)).mean(dim=-1).view(inputs.size()[:2] + (1,1,1,))
x = (inputs - rgb_mean) / self.rgb_max
x1 = x[:,:,0,:,:]
x2 = x[:,:,1,:,:]
x = torch.cat((x1,x2), dim = 1)
# flownetc
flownetc_flow2 = self.flownetc(x)[0]
flownetc_flow = self.upsample1(flownetc_flow2*self.div_flow)
# warp img1 to img0; magnitude of diff between img0 and and warped_img1,
resampled_img1 = self.resample1(x[:,3:,:,:], flownetc_flow)
diff_img0 = x[:,:3,:,:] - resampled_img1
norm_diff_img0 = self.channelnorm(diff_img0)
# concat img0, img1, img1->img0, flow, diff-mag ;
concat1 = torch.cat((x, resampled_img1, flownetc_flow/self.div_flow, norm_diff_img0), dim=1)
# flownets1
flownets1_flow2 = self.flownets_1(concat1)[0]
flownets1_flow = self.upsample2(flownets1_flow2*self.div_flow)
return flownets1_flow
class FlowNet2CSS(nn.Module):
def __init__(self, args, batchNorm=False, div_flow = 20.):
super(FlowNet2CSS,self).__init__()
self.batchNorm = batchNorm
self.div_flow = div_flow
self.rgb_max = args.rgb_max
self.args = args
self.channelnorm = ChannelNorm()
# First Block (FlowNetC)
self.flownetc = FlowNetC.FlowNetC(args, batchNorm=self.batchNorm)
self.upsample1 = nn.Upsample(scale_factor=4, mode='bilinear')
if args.fp16:
self.resample1 = nn.Sequential(
tofp32(),
Resample2d(),
tofp16())
else:
self.resample1 = Resample2d()
# Block (FlowNetS1)
self.flownets_1 = FlowNetS.FlowNetS(args, batchNorm=self.batchNorm)
self.upsample2 = nn.Upsample(scale_factor=4, mode='bilinear')
if args.fp16:
self.resample2 = nn.Sequential(
tofp32(),
Resample2d(),
tofp16())
else:
self.resample2 = Resample2d()
# Block (FlowNetS2)
self.flownets_2 = FlowNetS.FlowNetS(args, batchNorm=self.batchNorm)
self.upsample3 = nn.Upsample(scale_factor=4, mode='nearest')
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m.bias is not None:
init.uniform(m.bias)
init.xavier_uniform(m.weight)
if isinstance(m, nn.ConvTranspose2d):
if m.bias is not None:
init.uniform(m.bias)
init.xavier_uniform(m.weight)
# init_deconv_bilinear(m.weight)
def forward(self, inputs):
rgb_mean = inputs.contiguous().view(inputs.size()[:2]+(-1,)).mean(dim=-1).view(inputs.size()[:2] + (1,1,1,))
x = (inputs - rgb_mean) / self.rgb_max
x1 = x[:,:,0,:,:]
x2 = x[:,:,1,:,:]
x = torch.cat((x1,x2), dim = 1)
# flownetc
flownetc_flow2 = self.flownetc(x)[0]
flownetc_flow = self.upsample1(flownetc_flow2*self.div_flow)
# warp img1 to img0; magnitude of diff between img0 and and warped_img1,
resampled_img1 = self.resample1(x[:,3:,:,:], flownetc_flow)
diff_img0 = x[:,:3,:,:] - resampled_img1
norm_diff_img0 = self.channelnorm(diff_img0)
# concat img0, img1, img1->img0, flow, diff-mag ;
concat1 = torch.cat((x, resampled_img1, flownetc_flow/self.div_flow, norm_diff_img0), dim=1)
# flownets1
flownets1_flow2 = self.flownets_1(concat1)[0]
flownets1_flow = self.upsample2(flownets1_flow2*self.div_flow)
# warp img1 to img0 using flownets1; magnitude of diff between img0 and and warped_img1
resampled_img1 = self.resample2(x[:,3:,:,:], flownets1_flow)
diff_img0 = x[:,:3,:,:] - resampled_img1
norm_diff_img0 = self.channelnorm(diff_img0)
# concat img0, img1, img1->img0, flow, diff-mag
concat2 = torch.cat((x, resampled_img1, flownets1_flow/self.div_flow, norm_diff_img0), dim=1)
# flownets2
flownets2_flow2 = self.flownets_2(concat2)[0]
flownets2_flow = self.upsample3(flownets2_flow2 * self.div_flow)
return flownets2_flow
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化