代码拉取完成,页面将自动刷新
from torch import nn
import torch
class ClassificationModel3D(nn.Module):
"""分类器模型"""
def __init__(self, dropout=0.4, dropout2=0.4):
nn.Module.__init__(self)
# 定义四个Conv3d层
self.Conv_1 = nn.Conv3d(1, 8, 3) # 输入通道数为1,输出通道数为8,卷积核大小为3x3x3
self.Conv_2 = nn.Conv3d(8, 16, 3) # 输入通道数为8,输出通道数为16,卷积核大小为3x3x3
self.Conv_3 = nn.Conv3d(16, 32, 3) # 输入通道数为16,输出通道数为32,卷积核大小为3x3x3
self.Conv_4 = nn.Conv3d(32, 64, 3) # 输入通道数为32,输出通道数为64,卷积核大小为3x3x3
# 定义四个BatchNorm3d层,每个卷积层后面跟着一个BatchNorm3d层
self.Conv_1_bn = nn.BatchNorm3d(8)
self.Conv_2_bn = nn.BatchNorm3d(16)
self.Conv_3_bn = nn.BatchNorm3d(32)
self.Conv_4_bn = nn.BatchNorm3d(64)
# 定义四个MaxPool3d层,每个卷积层后面跟着一个MaxPool3d层
self.Conv_1_mp = nn.MaxPool3d(2) # 池化核大小为2
self.Conv_2_mp = nn.MaxPool3d(3) # 池化核大小为3
self.Conv_3_mp = nn.MaxPool3d(2) # 池化核大小为2
self.Conv_4_mp = nn.MaxPool3d(3) # 池化核大小为3
# 定义两个全连接层
self.dense_1 = nn.Linear(4800, 128) # 输入维度为4800,输出维度为128
self.dense_2 = nn.Linear(128, 5) # 输入维度为128,输出维度为5。因为这是一个五分类问题,所以最终需要输出维度为5
# 定义ReLU激活函数和dropout层
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout) # 防止过拟合
self.dropout2 = nn.Dropout(dropout2) # 增强鲁棒性
def forward(self, x):
# 第一层卷积层
x = self.relu(self.Conv_1_bn(self.Conv_1(x)))
"""
这行代码是对输入 x 进行卷积、批归一化和 ReLU 激活函数的操作。
self.Conv_1(x) 对输入 x 进行 3D 卷积操作,输出一个特征图。
self.Conv_1_bn(...) 对卷积输出的特征图进行批归一化操作,得到归一化后的特征图。
self.relu(...) 对归一化的特征图进行 ReLU 激活函数操作,得到激活后的特征图。
整个操作的作用是提取输入 x 中的特征,并将其非线性化,使得网络能够更好地学习这些特征。这里使用了批归一化的技术,可以加速模型的训练过程并提高模型的泛化能力。最终得到的输出结果是经过卷积、批归一化和 ReLU 激活函数处理后的特征图 x。
"""
# 第一层卷积层的最大池化
x = self.Conv_1_mp(x)
"""
这行代码是对输入 x 进行最大池化操作,将特征图的大小缩小一半。
self.Conv_1_mp(...) 对输入 x 进行最大池化操作,池化核大小为 2。
池化操作会将特征图中每个池化窗口内的最大值提取出来,作为输出特征图的对应位置的值,从而将特征图的大小缩小一半。
最大池化操作可以帮助网络实现空间不变性,使得网络在输入发生轻微变化时仍能识别出相同的特征。在这个模型中,经过最大池化后的特征图 x 会传递到下一层卷积层中进行特征提取和非线性化处理。
"""
# 第二层卷积层
x = self.relu(self.Conv_2_bn(self.Conv_2(x)))
# 第二层卷积层的最大池化
x = self.Conv_2_mp(x)
# 第三层卷积层
x = self.relu(self.Conv_3_bn(self.Conv_3(x)))
# 第三层卷积层的最大池化
x = self.Conv_3_mp(x)
# 第四层卷积层
x = self.relu(self.Conv_4_bn(self.Conv_4(x)))
# 第四层卷积层的最大池化
x = self.Conv_4_mp(x)
# 将张量展平为一维向量
x = x.view(x.size(0), -1)
"""
这行代码是将输入张量 x 展平为一维向量。
x.size(0) 得到输入张量 x 的第一个维度的大小,也就是张量的批次大小。
-1 表示将第二个维度及其后面的所有维度展平为一维。
x.view(...) 对输入张量 x 进行形状变换,将其展平为一维向量。
这个操作的作用是将经过卷积和池化处理后的特征图 x 变为一维向量,以便于传递到全连接层进行分类或回归等任务。展平后的向量大小为 (batch_size, num_features),其中 batch_size 是输入张量的批次大小,num_features 是展平后的向量元素个数,也就是经过卷积和池化处理后的特征数量。
"""
# dropout层
x = self.dropout(x)
"""
这行代码是对输入张量 x 进行 dropout 操作,即以一定概率将输入张量中的部分元素置为零。
self.dropout(...) 对输入张量 x 进行 dropout 操作,丢弃概率为 dropout。
dropout 操作会以一定概率将输入张量中的部分元素置为零,从而达到随机失活的目的。这样做可以减少过拟合,增强模型的泛化能力。
在这个模型中,dropout 操作被应用在全连接层之前,可以帮助模型更好地学习到数据的特征,防止过拟合。最终得到的 x 张量是经过 dropout 操作后的结果,会传递到下一层全连接层进行处理。
"""
# 全连接层1
x = self.relu(self.dense_1(x))
"""
这行代码是对输入张量 x 进行全连接操作,并应用 ReLU 激活函数。
self.dense_1(x) 对输入张量 x 进行全连接操作,将其映射到大小为 128 的特征空间中。
self.relu(...) 对全连接层的输出进行 ReLU 激活函数操作,得到激活后的特征向量。
在这个模型中,全连接层的作用是将经过卷积、池化和 dropout 处理后的特征向量映射到一个新的特征空间中,以便于进行分类或回归等任务。ReLU 激活函数的作用是对特征向量进行非线性化处理,使得网络能够更好地学习到数据中的非线性相关性。最终得到的 x 张量是经过全连接层和 ReLU 激活函数处理后的结果,会传递到下一层 dropout 层进行处理。
"""
# dropout2层
x = self.dropout2(x)
# 全连接层2
x = self.dense_2(x)
# 返回输出结果
return x
if __name__ == "__main__":
# 创建一个 ClassificationModel3D 类的实例 model,即创建一个 3D 图像分类模型
model = ClassificationModel3D()
# 创建一个形状为 (1, 1, 166, 256, 256) 的测试张量 test_tensor,
# 其中 1 表示批次大小,1 表示输入通道数,166、256 和 256 分别表示输入数据的深度、高度和宽度
test_tensor = torch.ones(1, 1, 166, 256, 256)
# 对测试张量 test_tensor 进行前向传递,得到模型的输出结果 output
output = model(test_tensor)
# 打印输出结果的形状,即 (batch_size, num_classes),其中 batch_size 是测试张量的批次大小,num_classes 是分类任务的类别数
print(output.shape)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。