代码拉取完成,页面将自动刷新
同步操作将从 EricMing/deeptesla 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python
from __future__ import division
import random
import os
import sys
from collections import OrderedDict
import cv2
import params
import preprocess
import local_common as cm
################ parameters ###############
data_dir = params.data_dir
batch_size = params.batch_size
epochs = params.epochs
img_height = params.img_height
img_width = params.img_width
img_channels = params.img_channels
############### building the batch definitions ###############
purposes = ['train', 'val']
batches = OrderedDict()
for purpose in purposes:
batches[purpose] = []
# determine the epoch_id, frame_start, frame_end
for purpose in epochs.keys():
assert len(epochs[purpose]) > 0
for epoch_id in epochs[purpose]:
vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
assert os.path.isfile(vid_path)
frame_count = cm.frame_count(vid_path)
assert batch_size <= frame_count
batch_count = int(frame_count / batch_size)
assert batch_count >= 1
for b in xrange(batch_count):
assert purpose in batches
frame_start = b * batch_size
frame_end = frame_start + batch_size - 1
assert frame_end < frame_count
batches[purpose].append(OrderedDict([
('epoch_id', epoch_id),
('frame_start', frame_start),
('frame_end', frame_end),
]))
current_batch_id = OrderedDict()
for purpose in purposes:
current_batch_id[purpose] = 0
def load_batch(purpose):
global current_batch_id
xx = []
yy = []
# fetch the batch definition
batch_id = current_batch_id[purpose]
assert batch_id < len(batches[purpose])
batch = batches[purpose][batch_id]
epoch_id, frame_start, frame_end = batch['epoch_id'], batch['frame_start'], batch['frame_end']
assert epoch_id is not None and frame_start is not None and frame_end is not None
# update the current batch
current_batch_id[purpose] = (current_batch_id[purpose] + 1) % len(batches[purpose])
# fetch image and steering data
vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
assert os.path.isfile(vid_path)
frame_count = cm.frame_count(vid_path)
cap = cv2.VideoCapture(vid_path)
cm.cv2_goto_frame(cap, frame_start)
csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
assert os.path.isfile(csv_path)
rows = cm.fetch_csv_data(csv_path)
assert frame_count == len(rows)
yy = [[float(row['wheel'])] for row in rows[frame_start:frame_end+1]]
for frame_id in xrange(frame_start, frame_end+1):
ret, img = cap.read()
assert ret
img = preprocess.preprocess(img)
#cv2.imwrite(os.path.abspath('output/sample_frame.jpg'), img)
xx.append(img)
assert len(xx) == len(yy)
cap.release()
return xx, yy
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。