代码拉取完成,页面将自动刷新
同步操作将从 MindSpore/mindformers 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Run MindFormer."""
import argparse
import os
import sys
from mindformers.tools.register import MindFormerConfig, ActionDict
from mindformers.tools.utils import str2bool, parse_value
from mindformers.core.context import build_context
from mindformers.trainer import Trainer
from mindformers.tools.cloud_adapter import cloud_monitor
from mindformers.tools.logger import logger
from mindformers.tools import set_output_path
SUPPORT_MULTI_MODAL_FILETYPES = {
"video": (".mp4", ".avi", ".mkv"),
"image": (".jpg", ".jpeg", ".png", ".bmp"),
}
def create_multi_modal_predict_data(predict_data_list, modal_type_list):
"""create multi-modal predict data according to the predict_data_list and modal_type_list"""
if not isinstance(predict_data_list, list):
raise ValueError("when modal_type is specified, the predict_data should be a list and should contain "
"modal path and text input")
if len(predict_data_list) != len(modal_type_list):
raise ValueError(f"the length of predict_data and modal_type should be the same, "
f"{len(predict_data_list)} and {len(modal_type_list)} are got.")
query = []
modal_type_list = [modal_type.lower() for modal_type in modal_type_list]
for predict_data_, modal_type in zip(predict_data_list, modal_type_list):
if modal_type == "text":
query.append({modal_type: predict_data_})
continue
if modal_type not in SUPPORT_MULTI_MODAL_FILETYPES:
raise ValueError(f"The modal_type {modal_type} is not supported, "
f"please check the predict_data `{predict_data_}` and its modal_type `{modal_type}`.")
if not predict_data_.endswith(SUPPORT_MULTI_MODAL_FILETYPES.get(modal_type)):
raise ValueError(f"the file type of {predict_data_} is not supported with modal_type={modal_type}, "
f"the support filetypes are {SUPPORT_MULTI_MODAL_FILETYPES.get(modal_type)}")
query.append({modal_type: predict_data_})
return query
@cloud_monitor()
def main(config):
"""main."""
# set output path
set_output_path(config.output_dir)
# init context
build_context(config)
trainer = Trainer(config)
if config.run_mode == 'train' or config.run_mode == 'finetune':
trainer.train()
elif config.run_mode == 'eval':
trainer.evaluate(eval_checkpoint=config.load_checkpoint)
elif config.run_mode == 'predict':
trainer.predict(predict_checkpoint=config.load_checkpoint, input_data=config.input_data,
batch_size=config.predict_batch_size, adapter_id=config.adapter_id)
if __name__ == "__main__":
work_path = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser()
parser.add_argument(
'--config',
default="configs/mae/run_mae_vit_base_p16_224_800ep.yaml",
required=True,
help='YAML config files')
parser.add_argument(
'--mode', default=None, type=int,
help='Running in GRAPH_MODE(0) or PYNATIVE_MODE(1). Default: GRAPH_MODE(0).'
'GRAPH_MODE or PYNATIVE_MODE can be set by `mode` attribute and both modes support all backends,'
'Default: None')
parser.add_argument(
'--device_id', default=None, type=int,
help='ID of the target device, the value must be in [0, device_num_per_host-1], '
'while device_num_per_host should be no more than 4096. Default: None')
parser.add_argument(
'--device_target', default=None, type=str,
help='The target device to run, support "Ascend", "GPU", and "CPU".'
'If device target is not set, the version of MindSpore package is used.'
'Default: None')
parser.add_argument(
'--run_mode', default=None, type=str,
help='task running status, it support [train, finetune, eval, predict].'
'Default: None')
parser.add_argument(
'--do_eval', default=None, type=str2bool,
help='whether do evaluate in training process.'
'Default: None')
parser.add_argument(
'--train_dataset_dir', default=None, type=str,
help='dataset directory of data loader to train/finetune. '
'Default: None')
parser.add_argument(
'--eval_dataset_dir', default=None, type=str,
help='dataset directory of data loader to eval. '
'Default: None')
parser.add_argument(
'--predict_data', default=None, type=str, nargs='+',
help='input data for predict, it support real data path or data directory.'
'Default: None')
parser.add_argument(
'--modal_type', default=None, type=str, nargs='+',
help='modal type of input data for predict.'
'Default: None')
parser.add_argument(
'--predict_batch_size', default=None, type=int,
help='batch size for predict data, set to perform batch predict.'
'Default: None')
parser.add_argument(
'--adapter_id', default=None, type=str, nargs='+',
help='LoRA ID for predict.'
'Default: None')
parser.add_argument(
'--load_checkpoint', default=None, type=str,
help="load model checkpoint to train/finetune/eval/predict, "
"it is also support input model name, such as 'mae_vit_base_p16', "
"please refer to https://gitee.com/mindspore/mindformers#%E4%BB%8B%E7%BB%8D."
"Default: None")
parser.add_argument(
'--src_strategy_path_or_dir', default=None, type=str,
help="The strategy of load_checkpoint, "
"if dir, it will be merged before transform checkpoint, "
"if file, it will be used in transform checkpoint directly, "
"Default: None, means load_checkpoint is a single whole ckpt, not distributed")
parser.add_argument(
'--auto_trans_ckpt', default=None, type=str2bool,
help="if true, auto transform load_checkpoint to load in distributed model. ")
parser.add_argument(
'--transform_process_num', default=None, type=int,
help="The number of processes responsible for checkpoint transform.")
parser.add_argument(
'--only_save_strategy', default=None, type=str2bool,
help="if true, when strategy files are saved, system exit. ")
parser.add_argument(
'--resume_training', default=None, type=str2bool,
help="Decide whether to resume training or specify the name of the checkpoint "
"from which to resume training.")
parser.add_argument(
'--strategy_load_checkpoint', default=None, type=str,
help='path to parallel strategy checkpoint to load, it support real data path or data directory.'
'Default: None')
parser.add_argument(
'--remote_save_url', default=None, type=str,
help='remote save url, where all the output files will tansferred and stroed in here. '
'Default: None')
parser.add_argument(
'--seed', default=None, type=int,
help='global random seed to train/finetune.'
'Default: None')
parser.add_argument(
'--use_parallel', default=None, type=str2bool,
help='whether use parallel mode. Default: None')
parser.add_argument(
'--profile', default=None, type=str2bool,
help='whether use profile analysis. Default: None')
parser.add_argument(
'--options',
nargs='+',
action=ActionDict,
help='override some settings in the used config, the key-value pair'
'in xxx=yyy format will be merged into config file')
parser.add_argument(
'--epochs', default=None, type=int,
help='train epochs.'
'Default: None')
parser.add_argument(
'--batch_size', default=None, type=int,
help='batch_size of datasets.'
'Default: None')
parser.add_argument(
'--gradient_accumulation_steps', default=None, type=int,
help='Number of updates steps to accumulate before performing a backward/update pass.'
'Default: None')
parser.add_argument(
'--sink_mode', default=None, type=str2bool,
help='whether use sink mode. '
'Default: None')
parser.add_argument(
'--num_samples', default=None, type=int,
help='number of datasets samples used.'
'Default: None')
parser.add_argument(
'--output_dir', default=None, type=str,
help='output directory.')
parser.add_argument(
'--register_path', default=None, type=str,
help='the register path of outer API.')
args_, rest_args_ = parser.parse_known_args()
rest_args_ = [i for item in rest_args_ for i in item.split("=")]
if len(rest_args_) % 2 != 0:
raise ValueError(f"input arg key-values are not in pair, please check input args. ")
if args_.config is not None and not os.path.isabs(args_.config):
args_.config = os.path.join(work_path, args_.config)
if args_.register_path is not None:
if not os.path.isabs(args_.register_path):
args_.register_path = os.path.join(work_path, args_.register_path)
# Setting Environment Variables: REGISTER_PATH For Auto Register to Outer API
os.environ["REGISTER_PATH"] = args_.register_path
if args_.register_path not in sys.path:
sys.path.append(args_.register_path)
if args_.run_mode is not None:
config_ = MindFormerConfig(args_.config, run_mode=args_.run_mode)
else:
config_ = MindFormerConfig(args_.config)
if args_.device_id is not None:
config_.context.device_id = args_.device_id
if args_.device_target is not None:
config_.context.device_target = args_.device_target
if args_.mode is not None:
config_.context.mode = args_.mode
if args_.do_eval is not None:
config_.do_eval = args_.do_eval
if args_.seed is not None:
config_.seed = args_.seed
if args_.use_parallel is not None:
config_.use_parallel = args_.use_parallel
if args_.load_checkpoint is not None:
config_.load_checkpoint = args_.load_checkpoint
if args_.src_strategy_path_or_dir is not None:
config_.src_strategy_path_or_dir = args_.src_strategy_path_or_dir
if args_.auto_trans_ckpt is not None:
config_.auto_trans_ckpt = args_.auto_trans_ckpt
if args_.transform_process_num is not None:
config_.transform_process_num = args_.transform_process_num
if args_.only_save_strategy is not None:
config_.only_save_strategy = args_.only_save_strategy
if args_.resume_training is not None:
config_.resume_training = args_.resume_training
if args_.strategy_load_checkpoint is not None:
if os.path.isdir(args_.strategy_load_checkpoint):
ckpt_list = [os.path.join(args_.strategy_load_checkpoint, file)
for file in os.listdir(args_.strategy_load_checkpoint) if file.endwith(".ckpt")]
args_.strategy_load_checkpoint = ckpt_list[0]
config_.parallel.strategy_ckpt_load_file = args_.strategy_load_checkpoint
if args_.remote_save_url is not None:
config_.remote_save_url = args_.remote_save_url
if args_.profile is not None:
config_.profile = args_.profile
if args_.options is not None:
config_.merge_from_dict(args_.options)
if config_.run_mode not in ['train', 'eval', 'predict', 'finetune']:
raise TypeError(f"run status must be in {['train', 'eval', 'predict', 'finetune']}, but {config_.run_mode}")
if args_.train_dataset_dir:
config_.train_dataset.data_loader.dataset_dir = args_.train_dataset_dir
if args_.eval_dataset_dir:
config_.eval_dataset.data_loader.dataset_dir = args_.eval_dataset_dir
if config_.run_mode == 'predict':
if args_.predict_data is None:
logger.info("dataset by config is used as input_data.")
if isinstance(args_.predict_data, list):
if len(args_.predict_data) > 1 or args_.modal_type is not None:
logger.info("predict data is a list, take it as input text list.")
else:
args_.predict_data = args_.predict_data[0]
if isinstance(args_.predict_data, str):
if os.path.isdir(args_.predict_data):
predict_data = []
for root, _, file_list in os.walk(os.path.join(args_.predict_data)):
for file in file_list:
if file.lower().endswith((".jpg", ".png", ".jpeg", ".JPEG", ".bmp")):
predict_data.append(os.path.join(root, file))
args_.predict_data = predict_data
else:
args_.predict_data = args_.predict_data.replace(r"\n", "\n")
if args_.modal_type is not None:
args_.predict_data = [create_multi_modal_predict_data(args_.predict_data, args_.modal_type)]
config_.input_data = args_.predict_data
if args_.predict_batch_size is not None:
config_.predict_batch_size = args_.predict_batch_size
if config_.model.model_config.pet_config and config_.model.model_config.pet_config.pet_type == "slora":
config_.adapter_id = args_.adapter_id
if args_.epochs is not None:
config_.runner_config.epochs = args_.epochs
if args_.batch_size is not None:
config_.runner_config.batch_size = args_.batch_size
if args_.gradient_accumulation_steps is not None:
config_.runner_config.gradient_accumulation_steps = args_.gradient_accumulation_steps
if args_.sink_mode is not None:
config_.runner_config.sink_mode = args_.sink_mode
if args_.num_samples is not None:
if config_.train_dataset and config_.train_dataset.data_loader:
config_.train_dataset.data_loader.num_samples = args_.num_samples
if config_.eval_dataset and config_.eval_dataset.data_loader:
config_.eval_dataset.data_loader.num_samples = args_.num_samples
if args_.output_dir is not None:
config_.output_dir = args_.output_dir
while rest_args_:
key = rest_args_.pop(0)
value = rest_args_.pop(0)
if not key.startswith("--"):
raise ValueError("Custom config key need to start with --.")
dists = key[2:].split(".")
dist_config = config_
while len(dists) > 1:
if dists[0] not in dist_config:
raise ValueError(f"{dists[0]} is not a key of {dist_config}, please check input arg keys. ")
dist_config = dist_config[dists.pop(0)]
dist_config[dists.pop()] = parse_value(value)
main(config_)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。