加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
autojump.py 5.25 KB
一键复制 编辑 原始数据 按行查看 历史
damone 提交于 2018-01-18 06:49 . 更新
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# autojump.py
# @Author : damone (summur0shine@gmail.com)
# @Link :
# @Date : 2018-1-14 04:47:46
import os
import sys
import cv2
import numpy as np
from matplotlib import pyplot as plt
import numpy
import math
import time
import random
class device_tool:
@staticmethod
def press_screen(x , y, time):
os.system("adb shell input swipe %d %d %d %d %d" % (x, y, x, y, time))
@staticmethod
def click(x, y):
os.system("adb shell input tap " + str(x) + " " + str(y))
@staticmethod
def screenshot(filename):
os.system("adb shell /system/bin/screencap -p " + filename)
@staticmethod
def download_file(device_filename, host_filename):
os.system("adb pull " + device_filename + " " + host_filename)
@staticmethod
def upload_file(host_filename, device_filename):
os.system("adb push " + host_filename + " " + device_filename)
@staticmethod
def mkdir(path):
os.system("adb shell mkdir " + path)
class detecter:
templatefilename = None
template = None
width = 0
height = 0
def __init__(self, templatefilename):
self.templatefilename = templatefilename
self.template = cv2.imread(templatefilename, 0)
self.width,self.height = self.template.shape[::-1]
def detect_person(self, gray):
method = eval('cv2.TM_CCOEFF')
res = cv2.matchTemplate(gray,self.template,method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = max_loc
bottom_right = (top_left[0] + self.width, top_left[1] + self.height)
return top_left, bottom_right
def detect_next_position(self, image, top, bottom):
image2 = image.copy()
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2HSV)
h,s,v = cv2.split(image2)
canny = cv2.Canny(h, 5, 5)
canny |= cv2.Canny(s, 5, 5)
canny |= cv2.Canny(v, 5, 5)
thresh = cv2.threshold(canny, 0, 255, cv2.THRESH_BINARY)[1]
thresh[top[1]:bottom[1], top[0]:bottom[0]] = 0
_, cnts, hierarchy = cv2.findContours( thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find contour
dest_cnt = None
dest_pos = None
dest_y = 10000
for c in cnts:
# if the contour is too small, ignore it
(x, y, w, h) = cv2.boundingRect(c)
if y < 350 or w < 60 or h < 20:
continue
pos_t, _ = self.get_position_top(c, y)
if pos_t[0] >= top[0] and pos_t[0] <= bottom[0] and pos_t[1] >= top[1] and pos_t[1] <= bottom[1]:
continue
if y < dest_y:
dest_y = y
dest_cnt = c
dest_pos = pos_t
return dest_cnt, dest_pos
def get_position_top(self, cnt, min_y):
pos = [0,0]
count = 0
for p in cnt:
p = p[0]
if(p[1] - min_y < 5):
count += 1
pos[0] += p[0]
pos[1] += p[1]
pos[0] /= count
pos[1] /= count
return (int(pos[0]), int(pos[1])), count
def get_person_pos(self, top, bottom):
x = int((top[0] + bottom[0]) / 2)
y = bottom[1] - 15
return (x,y)
def get_position_center(self, pos_s, pos_t):
x = pos_t[0]
y = pos_s[1]
y = int(y - 0.60 * abs(x - pos_s[0]))
if y < (pos_t[1] + 25) or y > (pos_t[1] + 150):
y = pos_t[1] + 25
return (x,y)
def show_results(self, image, cnt, top, bottom, pos_s, pos_e, pos_t, count):
cv2.circle(image, pos_t, 7, (255, 0, 0), -1)
cv2.circle(image, pos_s, 7, (0, 0, 255), -1)
cv2.circle(image, pos_e, 7, (0, 255, 0), -1)
cv2.drawContours(image, [cnt], -1, (0, 255, 0), 2)
cv2.rectangle(image,top, bottom, (0, 0, 255), 2)
filename = "data/%d.png" % (count)
cv2.imwrite(filename, image)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# plt.imshow(image)
# plt.show()
def detect_image(self, filename, count):
image = cv2.imread(filename)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
top, bottom = self.detect_person(gray)
cnt, pos_t = self.detect_next_position(image,top, bottom)
pos_s = self.get_person_pos(top, bottom)
pos_e = self.get_position_center(pos_s, pos_t)
self.show_results(image, cnt, top, bottom, pos_s, pos_e, pos_t, count)
return pos_s, pos_e
def jump():
count = 0
det = detecter("obj.png")
x_random = random.uniform(35, 70)
y_random = random.uniform(150, 300)
while True:
count += 1
device_tool.screenshot("/sdcard/test.png")
device_tool.download_file("/sdcard/test.png", "test.png")
pos_s, pos_e = det.detect_image("test.png", count)
s = math.sqrt(math.pow(pos_s[0] - pos_e[0], 2) + math.pow(pos_s[1] - pos_e[1], 2))
t = int(s * 1.351 + random.uniform(-5, 5))
if t < 50:
t = 50
p_x = 560 + int(random.uniform(-x_random, x_random))
p_y = 1500 + int(random.uniform(-y_random, y_random))
device_tool.press_screen(p_x, p_y, t)
time.sleep(random.uniform(.8, 2.5))
if __name__ == "__main__":
jump()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化