加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
2.model.py 6.59 KB
一键复制 编辑 原始数据 按行查看 历史
yangLiu 提交于 2022-08-23 11:07 . first commit
import os
import numpy as np
import pandas as pd
import xgboost as xgb
import lightgbm as lgb
import catboost as ctb
from tqdm import tqdm
from sklearn import preprocessing
from sklearn.model_selection import KFold, StratifiedKFold,train_test_split
from sklearn.metrics import mean_squared_error
def train_model_lgb(df_train , df_test , params , feature_col):
X = df_train.copy()
y = df_train['Label'].copy()
test = df_test.copy()
fi = []
cv_score = []
test_pred = np.zeros((test.shape[0],))
train_pred = np.zeros((X.shape[0],))
skf = KFold(n_splits=10, random_state=2019, shuffle=True)
for index, (train_index, test_index) in enumerate(skf.split(X, y)):
print(index)
train_x, test_x, train_y, test_y = X.iloc[train_index],X.iloc[test_index], y.iloc[train_index], y.iloc[test_index]
train_set = lgb.Dataset(train_x[feature_col], train_y)
test_set = lgb.Dataset(test_x[feature_col],test_y)
lgb_model = lgb.train(params,
train_set,
valid_sets=[train_set,test_set],
early_stopping_rounds=500,
num_boost_round=10000 ,
verbose_eval=1000)
y_val = lgb_model.predict(test_x[feature_col])
train_pred[test_index] = y_val
print( np.sqrt(mean_squared_error( test_y , y_val )) )
cv_score.append( np.sqrt(mean_squared_error( test_y , y_val)) )
print(cv_score[index])
test_pred += lgb_model.predict(test[feature_col]) / 10
return train_pred , test_pred
def submodel_lgb(train , test , subf , params , newtrain ,newtest, interval = 300 , extend_feature = set()):
for i in tqdm(range(int(len(subf)/interval)+1)):
feature = subf[i*interval:(i+1)*interval]
print('----------------',i,'---------------------------')
sup_trainp , sup_testp = train_model_lgb(train , test , params , list(set(feature) | extend_feature) )
newtrain[str(i)] = sup_trainp
newtest[str(i)] = sup_testp
return newtrain , newtest
def train_model_xgb(df_train , df_test , params , feature_col):
X = df_train.copy()
y = df_train['Label'].copy()
test = df_test.copy()
fi = []
cv_score = []
test_pred = np.zeros((test.shape[0],))
train_pred = np.zeros((X.shape[0],))
skf = KFold(n_splits=10, random_state=2019, shuffle=True)
for index, (train_index, test_index) in enumerate(skf.split(X, y)):
print(index)
train_x, test_x, train_y, test_y = X.iloc[train_index],X.iloc[test_index], y.iloc[train_index], y.iloc[test_index]
train_set = xgb.DMatrix(train_x[feature_col] , train_y)
test_set = xgb.DMatrix(test_x[feature_col] , test_y)
xgb_model = xgb.train(params,train_set,num_boost_round=10000)
y_val = xgb_model.predict(test_set)
train_pred[test_index] = y_val
print( np.sqrt(mean_squared_error( test_y , y_val )) )
cv_score.append( np.sqrt(mean_squared_error( test_y , y_val)) )
print(cv_score[index])
test_pred += xgb_model.predict(xgb.DMatrix(test[feature_col])) / 10
return train_pred , test_pred
def submodel_xgb(train , test , subf , params , newtrain ,newtest, interval = 300 , extend_feature = set()):
for i in range(int(len(subf)/interval)+1):
feature = subf[i*interval:(i+1)*interval]
print('----------------',i,'---------------------------')
sup_trainp , sup_testp = train_model_xgb(train , test , params , list(set(feature) | extend_feature))
newtrain[str(i)] = sup_trainp
newtest[str(i)] = sup_testp
return newtrain , newtest
def feature_eng(df):
df['Molecular_weight_log2'] = np.log2(df['Molecular weight'])
df['AlogP_log2'] = np.log2(df['AlogP'])
df['RO5_violations'].fillna(-1,inplace=True)
return df
def get_submodel(xgb_params , lgb_params):
df_train = pd.read_csv('df_train.csv')
df_test = pd.read_csv('df_test.csv')
subf = df_train.columns[6:]
base_feature = ['ID', 'Molecule_max_phase', 'Molecular weight', 'RO5_violations','AlogP']
print('getting the submodel of xgb...')
for xgb_feature_num in [200,300,400]:
print(f'creating the submodel of xgb{xgb_feature_num}')
xgb_train , xgb_test = submodel_xgb(df_train , df_test , subf ,xgb_params,df_train[base_feature+['Label']].copy(),df_test[base_feature].copy() , interval=xgb_feature_num)
xgb_train.to_csv(f'xgb_train_{xgb_feature_num}.csv' , index = None)
xgb_test.to_csv(f'xgb_test_{xgb_feature_num}.csv' , index = None)
df_train = feature_eng(df_train)
df_test = feature_eng(df_test)
base_feature = base_feature + ['Molecular_weight_log2' , 'AlogP_log2']
print('getting the submodel of lgb...')
for lgb_feature_num in [300,400,500]:
print(f'creating the submodel of lgb{lgb_feature_num}')
lgb_train , lgb_test = submodel_lgb(df_train , df_test , subf ,lgb_params,df_train[base_feature+['Label']].copy(),df_test[base_feature].copy(),interval = lgb_feature_num)
lgb_train.to_csv(f'lgb_train_{lgb_feature_num}.csv' , index = None)
lgb_test.to_csv(f'lgb_test_{lgb_feature_num}.csv' , index = None)
extend_feature = { 'Molecule_max_phase', 'Molecular weight', 'RO5_violations','AlogP',}
print('getting the submodel of fixed-feature-xgb...')
for xgb_feature_num in [304,404]:
print(f'creating the submodel of xgb{xgb_feature_num}')
xgb_train , xgb_test = submodel_xgb(df_train , df_test , subf ,xgb_params,df_train[base_feature+['Label']].copy(),df_test[base_feature].copy() , interval=xgb_feature_num - 4 , extend_feature=extend_feature)
xgb_train.to_csv(f'xgb_train_{xgb_feature_num}.csv' , index = None)
xgb_test.to_csv(f'xgb_test_{xgb_feature_num}.csv' , index = None)
print("submodel finished!!!")
xgb_params = {
'booster':'gbtree',
'objective':'reg:linear',
'eta':0.02,
'max_depth':6,
'subsample':1.0,
'min_child_weight':5,
'colsample_bytree':0.2,
'gamma':0.2,
'lambda':3,
'nthread': -1,
'early_stopping_rounds':1,
'verbose_eval':1,
'silient':1,
'metric': 'rmse'
}
lgb_params = {'objective': 'regression',
'learning_rate': 0.02 ,
'num_leaves': 40 ,
'max_depth': 8 ,
'feature_fraction': 0.8,
'bagging_fraction' : 0.8,
'num_threads':-1,
'metric': 'rmse',}
get_submodel(xgb_params , lgb_params)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化