代码拉取完成,页面将自动刷新
<!DOCTYPE html>
<html class="theme-next pisces use-motion" lang="zh-CN">
<head><meta name="generator" content="Hexo 3.8.0">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=2">
<meta name="theme-color" content="#222">
<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Monda:300,300italic,400,400italic,700,700italic|Roboto Slab:300,300italic,400,400italic,700,700italic|Lobster Two:300,300italic,400,400italic,700,700italic|PT Mono:300,300italic,400,400italic,700,700italic&subset=latin,latin-ext">
<link rel="stylesheet" href="/lib/font-awesome/css/font-awesome.min.css?v=4.7.0">
<link rel="stylesheet" href="/css/main.css?v=7.1.2">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png?v=7.1.2">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png?v=7.1.2">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon.ico?v=7.1.2">
<link rel="mask-icon" href="/images/logo.svg?v=7.1.2" color="#222">
<script id="hexo.configurations">
var NexT = window.NexT || {};
var CONFIG = {
root: '/',
scheme: 'Pisces',
version: '7.1.2',
sidebar: {"position":"left","display":"hide","offset":12,"onmobile":false,"dimmer":false},
back2top: true,
back2top_sidebar: false,
fancybox: false,
fastclick: false,
lazyload: false,
tabs: true,
motion: {"enable":true,"async":true,"transition":{"post_block":"fadeIn","post_header":"slideDownIn","post_body":"slideDownIn","coll_header":"slideLeftIn","sidebar":"slideUpIn"}},
algolia: {
applicationID: '',
apiKey: '',
indexName: '',
hits: {"per_page":10},
labels: {"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}
}
};
</script>
<meta name="description" content="学习Apriori算法首先要了解几个概念:项集、支持度、置信度、最小支持度、最小置信度、频繁项集。 项集:顾名思义,即项的集合。eg:牛奶、面包组成一个集合{牛奶、面包},其中牛奶和面包为项,{牛奶、面包}为项集,称之为2项集。(说白了,其实就是集合)支持度:项集A、B同时发生的概率称之为关联规则的支持度。置信度:项集A发生的情况下,则项集B发生的概率为关联规则的置信度。">
<meta name="keywords" content="Apriori">
<meta property="og:type" content="article">
<meta property="og:title" content="Apriori算法简析">
<meta property="og:url" content="https://www.dudefu.tk/Apriori算法简析.html">
<meta property="og:site_name" content="The Future">
<meta property="og:description" content="学习Apriori算法首先要了解几个概念:项集、支持度、置信度、最小支持度、最小置信度、频繁项集。 项集:顾名思义,即项的集合。eg:牛奶、面包组成一个集合{牛奶、面包},其中牛奶和面包为项,{牛奶、面包}为项集,称之为2项集。(说白了,其实就是集合)支持度:项集A、B同时发生的概率称之为关联规则的支持度。置信度:项集A发生的情况下,则项集B发生的概率为关联规则的置信度。">
<meta property="og:locale" content="zh-CN">
<meta property="og:image" content="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlcwo3sj307n03rmx3.jpg">
<meta property="og:image" content="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlgcyoxj30pe07qjub.jpg">
<meta property="og:image" content="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlk2g29j30ml0ggtem.jpg">
<meta property="og:image" content="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlnscl0j30fw0g5adg.jpg">
<meta property="og:image" content="https://tva1.sinaimg.cn/large/008eGmZEly1gnynmc9a5dj308905r3yb.jpg">
<meta property="og:updated_time" content="2021-02-24T08:07:22.604Z">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="Apriori算法简析">
<meta name="twitter:description" content="学习Apriori算法首先要了解几个概念:项集、支持度、置信度、最小支持度、最小置信度、频繁项集。 项集:顾名思义,即项的集合。eg:牛奶、面包组成一个集合{牛奶、面包},其中牛奶和面包为项,{牛奶、面包}为项集,称之为2项集。(说白了,其实就是集合)支持度:项集A、B同时发生的概率称之为关联规则的支持度。置信度:项集A发生的情况下,则项集B发生的概率为关联规则的置信度。">
<meta name="twitter:image" content="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlcwo3sj307n03rmx3.jpg">
<link rel="canonical" href="https://www.dudefu.tk/Apriori算法简析">
<script id="page.configurations">
CONFIG.page = {
sidebar: "",
};
</script>
<title>Apriori算法简析 | The Future</title>
<noscript>
<style>
.use-motion .motion-element,
.use-motion .brand,
.use-motion .menu-item,
.sidebar-inner,
.use-motion .post-block,
.use-motion .pagination,
.use-motion .comments,
.use-motion .post-header,
.use-motion .post-body,
.use-motion .collection-title { opacity: initial; }
.use-motion .logo,
.use-motion .site-title,
.use-motion .site-subtitle {
opacity: initial;
top: initial;
}
.use-motion .logo-line-before i { left: initial; }
.use-motion .logo-line-after i { right: initial; }
</style>
</noscript>
</head>
<body itemscope="" itemtype="http://schema.org/WebPage" lang="zh-CN">
<div class="container sidebar-position-left page-post-detail">
<div class="headband"></div>
<header id="header" class="header" itemscope="" itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-wrapper">
<div class="site-meta">
<div class="custom-logo-site-title">
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<span class="site-title">The Future</span>
<span class="logo-line-after"><i></i></span>
</a>
</div>
<h1 class="site-subtitle" itemprop="description">Stay hungry,stay foolish.</h1>
</div>
<div class="site-nav-toggle">
<button aria-label="切换导航栏">
<span class="btn-bar"></span>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
</button>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section"><i class="menu-item-icon fa fa-fw fa-home"></i> <br>首页</a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section"><i class="menu-item-icon fa fa-fw fa-archive"></i> <br>归档<span class="badge">125</span></a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories" rel="section"><i class="menu-item-icon fa fa-fw fa-th"></i> <br>分类<span class="badge">15</span></a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags" rel="section"><i class="menu-item-icon fa fa-fw fa-tags"></i> <br>标签<span class="badge">63</span></a>
</li>
<li class="menu-item menu-item-something">
<a href="/something" rel="section"><i class="menu-item-icon fa fa-fw fa-paper-plane"></i> <br>干货</a>
</li>
<li class="menu-item menu-item-about">
<a href="/about/" rel="section"><i class="menu-item-icon fa fa-fw fa-user"></i> <br>关于</a>
</li>
<li class="menu-item menu-item-search">
<a href="javascript:;" class="popup-trigger">
<i class="menu-item-icon fa fa-search fa-fw"></i> <br>搜索</a>
</li>
</ul>
<div class="site-search">
<div class="popup search-popup local-search-popup">
<div class="local-search-header clearfix">
<span class="search-icon">
<i class="fa fa-search"></i>
</span>
<span class="popup-btn-close">
<i class="fa fa-times-circle"></i>
</span>
<div class="local-search-input-wrapper">
<input autocomplete="off" placeholder="搜索..." spellcheck="false" type="text" id="local-search-input">
</div>
</div>
<div id="local-search-result"></div>
</div>
</div>
</nav>
</div>
</header>
<main id="main" class="main">
<div class="main-inner">
<div class="content-wrap">
<div id="content" class="content">
<div id="posts" class="posts-expand">
<div class="reading-progress-bar"></div>
<article class="post post-type-normal" itemscope="" itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="https://www.dudefu.tk/Apriori算法简析.html">
<span hidden itemprop="author" itemscope="" itemtype="http://schema.org/Person">
<meta itemprop="name" content="Daniel X">
<meta itemprop="description" content="專注于大数据技術,分享干货">
<meta itemprop="image" content="https://hexoblog-1254111960.cos.ap-guangzhou.myqcloud.com/HexoBlog-tou.jpg">
</span>
<span hidden itemprop="publisher" itemscope="" itemtype="http://schema.org/Organization">
<meta itemprop="name" content="The Future">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">Apriori算法简析
</h2>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2021-02-24 15:24:39 / 修改时间:16:07:22" itemprop="dateCreated datePublished" datetime="2021-02-24T15:24:39+08:00">2021-02-24</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope="" itemtype="http://schema.org/Thing"><a href="/categories/数据挖掘/" itemprop="url" rel="index"><span itemprop="name">数据挖掘</span></a></span>
</span>
<span class="post-comments-count">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-comment-o"></i>
</span>
<span class="post-meta-item-text">评论数:</span>
<a href="/Apriori算法简析.html#comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/Apriori算法简析.html" itemprop="commentCount"></span>
</a>
</span>
<span id="/Apriori算法简析.html" class="leancloud_visitors" data-flag-title="Apriori算法简析">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>
<span class="post-meta-item-text">阅读次数:</span>
<span class="leancloud-visitors-count"></span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<p>学习Apriori算法首先要了解几个概念:项集、支持度、置信度、最小支持度、最小置信度、频繁项集。</p>
<p>项集:顾名思义,即项的集合。eg:牛奶、面包组成一个集合{牛奶、面包},其中牛奶和面包为项,{牛奶、面包}为项集,称之为2项集。(说白了,其实就是集合)<br>支持度:项集A、B同时发生的概率称之为关联规则的支持度。<br>置信度:项集A发生的情况下,则项集B发生的概率为关联规则的置信度。</p>
<a id="more"></a>
<p>支持度与置信度的概念有些抽象,具体可以看下面的例子:<br><img src="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlcwo3sj307n03rmx3.jpg" alt="这里写图片描述"><br>如图数据为顾客购物情况,每一个id对应的items都是一个项集,现在需要对{milk,diaper}与{beer}关联性进行研究,计算支持度与置信度。<br>计算如下:<br>计算支持度:计算{milk,diaper}{beer}同时发生的概率就相当于计算{milk,diaper,beer}出现的次数所占数据条的比重,即2/5.<br>计算置信度:计算{milk,diaper}发生的情况下,则{beer}发生的概率就相当于计算{milk,diaper,beer}出现的次数所占{milk,diaper}发生次数的比重,即2/3.</p>
<p>最小支持度:最小支持度就是人为按照实际意义规定的阈值,表示项集在统计意义上的最低重要性。<br>最小置信度:最小置信度也是人为按照实际意义规定的阈值,表示关联规则最低可靠性。<br>如果支持度与置信度同时达到最小支持度与最小置信度,则此关联规则为强规则。<br>频繁项集:满足最小支持度的所有项集,称作频繁项集。<br>(频繁项集性质:1、频繁项集的所有非空子集也为频繁项集;2、若A项集不是频繁项集,则其他项集或事务与A项集的并集也不是频繁项集)</p>
<p>了解了以上定义,那么如何从大量的数据中找出不同项的关联规则呢?下面具体看Apriori算法实现过程。<br>Apriori实现过程:首先,找出所有的频繁项集,再从频繁项集中找出符合最小置信度的项集,最终便得到有强规则的项集(即我们所需的项的关联性)。<br>例如:<br>数据如下<br><img src="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlgcyoxj30pe07qjub.jpg" alt="这里写图片描述"><br>算法过程如下<br>首先计算出所有的频繁项集,这里最小支持度为0.2<br><img src="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlk2g29j30ml0ggtem.jpg" alt="这里写图片描述"><br>得出L1、L2、L3的各个项集均为频繁项集,再进行计算每个频繁项集的置信度,其中L1不必计算。计算结果如下<br><img src="https://tva1.sinaimg.cn/large/008eGmZEly1gnynlnscl0j30fw0g5adg.jpg" alt="这里写图片描述"><br>(如果想了解寻找频繁项集的详细过程,可以研读张良均等著《python数据分析与挖掘实战》,里面有详细过程)<br>至此就完成了Apriori算法的全部过程。</p>
<p>接下来python实现Apriori算法</p>
<figure class="highlight python"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br><span class="line">43</span><br><span class="line">44</span><br><span class="line">45</span><br><span class="line">46</span><br><span class="line">47</span><br><span class="line">48</span><br><span class="line">49</span><br><span class="line">50</span><br><span class="line">51</span><br><span class="line">52</span><br><span class="line">53</span><br><span class="line">54</span><br><span class="line">55</span><br><span class="line">56</span><br><span class="line">57</span><br><span class="line">58</span><br></pre></td><td class="code"><pre><span class="line"><span class="comment">#-*- coding: utf-8 -*-</span></span><br><span class="line"><span class="keyword">from</span> __future__ <span class="keyword">import</span> print_function</span><br><span class="line"><span class="keyword">import</span> pandas <span class="keyword">as</span> pd</span><br><span class="line"></span><br><span class="line"><span class="comment">#自定义连接函数,用于实现L_{k-1}到C_k的连接</span></span><br><span class="line"><span class="function"><span class="keyword">def</span> <span class="title">connect_string</span><span class="params">(x, ms)</span>:</span></span><br><span class="line"> x = list(map(<span class="keyword">lambda</span> i:sorted(i.split(ms)), x))</span><br><span class="line"> l = len(x[<span class="number">0</span>])</span><br><span class="line"> r = []</span><br><span class="line"> <span class="keyword">for</span> i <span class="keyword">in</span> range(len(x)):</span><br><span class="line"> <span class="keyword">for</span> j <span class="keyword">in</span> range(i,len(x)):</span><br><span class="line"> <span class="keyword">if</span> x[i][:l<span class="number">-1</span>] == x[j][:l<span class="number">-1</span>] <span class="keyword">and</span> x[i][l<span class="number">-1</span>] != x[j][l<span class="number">-1</span>]:</span><br><span class="line"> r.append(x[i][:l<span class="number">-1</span>]+sorted([x[j][l<span class="number">-1</span>],x[i][l<span class="number">-1</span>]]))</span><br><span class="line"> <span class="keyword">return</span> r</span><br><span class="line"></span><br><span class="line"><span class="comment">#寻找关联规则的函数</span></span><br><span class="line"><span class="function"><span class="keyword">def</span> <span class="title">find_rule</span><span class="params">(d, support, confidence, ms = <span class="string">u'--'</span>)</span>:</span></span><br><span class="line"> result = pd.DataFrame(index=[<span class="string">'support'</span>, <span class="string">'confidence'</span>]) <span class="comment">#定义输出结果</span></span><br><span class="line"></span><br><span class="line"> support_series = <span class="number">1.0</span>*d.sum()/len(d) <span class="comment">#支持度序列</span></span><br><span class="line"> column = list(support_series[support_series > support].index) <span class="comment">#初步根据支持度筛选</span></span><br><span class="line"> k = <span class="number">0</span></span><br><span class="line"></span><br><span class="line"> <span class="keyword">while</span> len(column) > <span class="number">1</span>:</span><br><span class="line"> k = k+<span class="number">1</span></span><br><span class="line"> print(<span class="string">u'\n正在进行第%s次搜索...'</span> %k)</span><br><span class="line"> column = connect_string(column, ms)</span><br><span class="line"> print(<span class="string">u'数目:%s...'</span> %len(column))</span><br><span class="line"> sf = <span class="keyword">lambda</span> i: d[i].prod(axis=<span class="number">1</span>, numeric_only = <span class="keyword">True</span>) <span class="comment">#新一批支持度的计算函数</span></span><br><span class="line"></span><br><span class="line"> <span class="comment">#创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。</span></span><br><span class="line"> d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) <span class="keyword">for</span> i <span class="keyword">in</span> column]).T</span><br><span class="line"></span><br><span class="line"> support_series_2 = <span class="number">1.0</span>*d_2[[ms.join(i) <span class="keyword">for</span> i <span class="keyword">in</span> column]].sum()/len(d) <span class="comment">#计算连接后的支持度</span></span><br><span class="line"> column = list(support_series_2[support_series_2 > support].index) <span class="comment">#新一轮支持度筛选</span></span><br><span class="line"> support_series = support_series.append(support_series_2)</span><br><span class="line"> column2 = []</span><br><span class="line"></span><br><span class="line"> <span class="keyword">for</span> i <span class="keyword">in</span> column: <span class="comment">#遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?</span></span><br><span class="line"> i = i.split(ms)</span><br><span class="line"> <span class="keyword">for</span> j <span class="keyword">in</span> range(len(i)):</span><br><span class="line"> column2.append(i[:j]+i[j+<span class="number">1</span>:]+i[j:j+<span class="number">1</span>])</span><br><span class="line"></span><br><span class="line"> cofidence_series = pd.Series(index=[ms.join(i) <span class="keyword">for</span> i <span class="keyword">in</span> column2]) <span class="comment">#定义置信度序列</span></span><br><span class="line"></span><br><span class="line"> <span class="keyword">for</span> i <span class="keyword">in</span> column2: <span class="comment">#计算置信度序列</span></span><br><span class="line"> cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)<span class="number">-1</span>])]</span><br><span class="line"></span><br><span class="line"> <span class="keyword">for</span> i <span class="keyword">in</span> cofidence_series[cofidence_series > confidence].index: <span class="comment">#置信度筛选</span></span><br><span class="line"> result[i] = <span class="number">0.0</span></span><br><span class="line"> result[i][<span class="string">'confidence'</span>] = cofidence_series[i]</span><br><span class="line"> result[i][<span class="string">'support'</span>] = support_series[ms.join(sorted(i.split(ms)))]</span><br><span class="line"></span><br><span class="line"> result = result.T.sort_values([<span class="string">'confidence'</span>,<span class="string">'support'</span>], ascending = <span class="keyword">False</span>) <span class="comment">#结果整理,输出</span></span><br><span class="line"> print(<span class="string">u'\n结果为:'</span>)</span><br><span class="line"> print(result)</span><br><span class="line"></span><br><span class="line"> <span class="keyword">return</span> result</span><br></pre></td></tr></table></figure>
<p>Apriori算法调用,进行关联性分析<br>数据如下<br><img src="https://tva1.sinaimg.cn/large/008eGmZEly1gnynmc9a5dj308905r3yb.jpg" alt="这里写图片描述"><br>代码如下</p>
<figure class="highlight python"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br></pre></td><td class="code"><pre><span class="line"><span class="comment">#-*- coding: utf-8 -*-</span></span><br><span class="line"><span class="comment">#使用Apriori算法挖掘菜品订单关联规则</span></span><br><span class="line"><span class="keyword">from</span> __future__ <span class="keyword">import</span> print_function</span><br><span class="line"><span class="keyword">import</span> pandas <span class="keyword">as</span> pd</span><br><span class="line"><span class="keyword">from</span> apriori <span class="keyword">import</span> * <span class="comment">#导入自行编写的apriori函数</span></span><br><span class="line"></span><br><span class="line">inputfile = <span class="string">'../data/menu_orders.xls'</span></span><br><span class="line">outputfile = <span class="string">'../tmp/apriori_rules.xls'</span> <span class="comment">#结果文件</span></span><br><span class="line">data = pd.read_excel(inputfile, header = <span class="keyword">None</span>)</span><br><span class="line"></span><br><span class="line">print(<span class="string">u'\n转换原始数据至0-1矩阵...'</span>)</span><br><span class="line">ct = <span class="keyword">lambda</span> x : pd.Series(<span class="number">1</span>, index = x[pd.notnull(x)]) <span class="comment">#转换0-1矩阵的过渡函数</span></span><br><span class="line">b = map(ct, data.as_matrix()) <span class="comment">#用map方式执行</span></span><br><span class="line">data = pd.DataFrame(list(b)).fillna(<span class="number">0</span>) <span class="comment">#实现矩阵转换,空值用0填充</span></span><br><span class="line">print(<span class="string">u'\n转换完毕。'</span>)</span><br><span class="line"><span class="keyword">del</span> b <span class="comment">#删除中间变量b,节省内存</span></span><br><span class="line"></span><br><span class="line">support = <span class="number">0.2</span> <span class="comment">#最小支持度</span></span><br><span class="line">confidence = <span class="number">0.5</span> <span class="comment">#最小置信度</span></span><br><span class="line">ms = <span class="string">'---'</span> <span class="comment">#连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符</span></span><br><span class="line"></span><br><span class="line">find_rule(data, support, confidence, ms).to_excel(outputfile) <span class="comment">#保存结果</span></span><br></pre></td></tr></table></figure>
<p>结果如下<br>support confidence<br>e—a 0.3 1.000000<br>e—c 0.3 1.000000<br>c—e—a 0.3 1.000000<br>a—e—c 0.3 1.000000<br>c—a 0.5 0.714286<br>a—c 0.5 0.714286<br>a—b 0.5 0.714286<br>c—b 0.5 0.714286<br>b—a 0.5 0.625000<br>b—c 0.5 0.625000<br>a—c—e 0.3 0.600000<br>b—c—a 0.3 0.600000<br>a—c—b 0.3 0.600000<br>a—b—c 0.3 0.600000</p>
<p>本文主要参考书籍张良均等著《python数据分析与挖掘实战》<br>本文主要参考博客<span class="exturl" data-url="aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2JhaW1hZnVqaW5qaS9hcnRpY2xlL2RldGFpbHMvNTM0NTY5MzE=" title="https://blog.csdn.net/baimafujinji/article/details/53456931">https://blog.csdn.net/baimafujinji/article/details/53456931<i class="fa fa-external-link"></i></span></p>
<p><span class="exturl" data-url="aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2xid2Vpd2FuL2FydGljbGUvZGV0YWlscy84MjcyNTQ2Nj9kaXN0X3JlcXVlc3RfaWQ9MDc1MzQxOTgtZmJiZS00ODI1LTliZmYtMjFmYmQ4YjcyYTFkJmFtcDtkZXB0aF8xLQ==" title="https://blog.csdn.net/lbweiwan/article/details/82725466?dist_request_id=07534198-fbbe-4825-9bff-21fbd8b72a1d&depth_1-">转载地址<i class="fa fa-external-link"></i></span></p>
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/Apriori/" rel="tag"><i class="fa fa-tag"></i> Apriori</a>
</div>
<div class="post-widgets">
<div class="social_share">
<div>
<script src="//cdn.jsdelivr.net/npm/ilyabirman-likely@2/release/likely.js"></script>
<link rel="stylesheet" href="//cdn.jsdelivr.net/npm/ilyabirman-likely@2/release/likely.css">
<div class="likely likely-light">
<div class="twitter">Tweet</div>
<div class="facebook">Share</div>
<div class="linkedin">Link</div>
<div class="gplus">Plus</div>
<div class="vkontakte">Share</div>
<div class="odnoklassniki">Class</div>
<div class="telegram">Send</div>
<div class="whatsapp">Send</div>
<div class="pinterest">Pin</div>
</div>
</div>
<div>
<div class="bdsharebuttonbox">
<a href="#" class="bds_tsina" data-cmd="tsina" title="分享到新浪微博"></a>
<a href="#" class="bds_douban" data-cmd="douban" title="分享到豆瓣网"></a>
<a href="#" class="bds_sqq" data-cmd="sqq" title="分享到QQ好友"></a>
<a href="#" class="bds_qzone" data-cmd="qzone" title="分享到QQ空间"></a>
<a href="#" class="bds_weixin" data-cmd="weixin" title="分享到微信"></a>
<a href="#" class="bds_tieba" data-cmd="tieba" title="分享到百度贴吧"></a>
<a href="#" class="bds_twi" data-cmd="twi" title="分享到Twitter"></a>
<a href="#" class="bds_fbook" data-cmd="fbook" title="分享到Facebook"></a>
<a href="#" class="bds_more" data-cmd="more"></a>
<a class="bds_count" data-cmd="count"></a>
</div>
<script>
window._bd_share_config = {
"common": {
"bdText": "",
"bdMini": "2",
"bdMiniList": false,
"bdPic": ""
},
"share": {
"bdSize": "16",
"bdStyle": "0"
},
"image": {
"viewList": ["tsina", "douban", "sqq", "qzone", "weixin", "twi", "fbook"],
"viewText": "分享到:",
"viewSize": "16"
}
}
</script>
<script>
with(document)0[(getElementsByTagName('head')[0]||body).appendChild(createElement('script')).src='//bdimg.share.baidu.com/static/api/js/share.js?cdnversion='+~(-new Date()/36e5)];
</script>
</div>
</div>
</div>
<div class="post-nav">
<div class="post-nav-next post-nav-item">
<a href="/Apache Flink 零基础入门(八)-SQL编程实践.html" rel="next" title="Apache Flink 零基础入门(八):SQL编程实践">
<i class="fa fa-chevron-left"></i> Apache Flink 零基础入门(八):SQL编程实践
</a>
</div>
<span class="post-nav-divider"></span>
<div class="post-nav-prev post-nav-item">
<a href="/Apriori算法简介-关联规则的频繁项集算法.html" rel="prev" title="Apriori算法简介---关联规则的频繁项集算法">
Apriori算法简介---关联规则的频繁项集算法 <i class="fa fa-chevron-right"></i>
</a>
</div>
</div>
</footer>
</div>
</article>
</div>
</div>
<div class="comments" id="comments">
<div id="lv-container" data-id="city" data-uid="MTAyMC8yOTk3My82NTM4"></div>
</div>
</div>
<div class="sidebar-toggle">
<div class="sidebar-toggle-line-wrap">
<span class="sidebar-toggle-line sidebar-toggle-line-first"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-middle"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-last"></span>
</div>
</div>
<aside id="sidebar" class="sidebar">
<div class="sidebar-inner">
<div class="site-overview-wrap sidebar-panel sidebar-panel-active">
<div class="site-overview">
<div class="site-author motion-element" itemprop="author" itemscope="" itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image" src="https://hexoblog-1254111960.cos.ap-guangzhou.myqcloud.com/HexoBlog-tou.jpg" alt="Daniel X">
<p class="site-author-name" itemprop="name">Daniel X</p>
<div class="site-description motion-element" itemprop="description">專注于大数据技術,分享干货</div>
</div>
<nav class="site-state motion-element">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">125</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-categories">
<a href="/categories">
<span class="site-state-item-count">15</span>
<span class="site-state-item-name">分类</span>
</a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags">
<span class="site-state-item-count">63</span>
<span class="site-state-item-name">标签</span>
</a>
</div>
</nav>
<div class="links-of-author motion-element">
<span class="links-of-author-item">
<span class="exturl" data-url="aHR0cHM6Ly9naXRodWIuY29tL2R1ZGVmdQ==" title="GitHub → https://github.com/dudefu"><i class="fa fa-fw fa-github"></i>GitHub</span>
</span>
<span class="links-of-author-item">
<span class="exturl" data-url="bWFpbHRvOmR1ZGVmdUBmb3htYWlsLmNvbT9zdWJqZWN0PUhlbGxvJTIwYWdhaW4=" title="E-mail → mailto:dudefu@foxmail.com?subject=Hello%20again"><i class="fa fa-fw fa-envelope"></i>E-mail</span>
</span>
<span class="links-of-author-item">
<span class="exturl" data-url="aHR0cHM6Ly93ZWliby5jb20vZHVkZWZ1" title="Weibo → https://weibo.com/dudefu"><i class="fa fa-fw fa-weibo"></i>Weibo</span>
</span>
<span class="links-of-author-item">
<span class="exturl" data-url="aHR0cHM6Ly93cGEucXEuY29tL21zZ3JkP3Y9MyZ1aW49MTU3NzU3MTk1OSZzaXRlPWR1ZGVmdS5pbmZvJm1lbnU9eWVz" title="QQ → https://wpa.qq.com/msgrd?v=3&uin=1577571959&site=dudefu.info&menu=yes"><i class="fa fa-fw fa-qq"></i>QQ</span>
</span>
</div>
</div>
</div>
</div>
</aside>
</div>
</main>
<footer id="footer" class="footer">
<div class="footer-inner">
<div class="copyright"> <span class="exturl" data-url="aHR0cDovL3d3dy5iZWlhbi5taWl0Lmdvdi5jbg==">粤ICP备18110871号 </span>© 2017 – <span itemprop="copyrightYear">2021</span>
<span class="with-love" id="animate">
<i class="fa fa-spinner"></i>
</span>
<span class="author" itemprop="copyrightHolder">dudefu</span>
</div>
<!--
<div class="powered-by">由 <span class="exturl theme-link" data-url="aHR0cHM6Ly9oZXhvLmlv">Hexo</span> 强力驱动 v3.8.0</div>
<span class="post-meta-divider">|</span>
<div class="theme-info">主题 – <span class="exturl theme-link" data-url="aHR0cHM6Ly90aGVtZS1uZXh0Lm9yZw==">NexT.Pisces</span> v7.1.2</div>
-->
</div>
</footer>
<div class="back-to-top">
<i class="fa fa-arrow-up"></i>
<span id="scrollpercent"><span>0</span>%</span>
</div>
</div>
<script>
if (Object.prototype.toString.call(window.Promise) !== '[object Function]') {
window.Promise = null;
}
</script>
<script color="26,26,26" opacity="0.5" zindex="-1" count="99" src="//cdn.jsdelivr.net/gh/theme-next/theme-next-canvas-nest@1/canvas-nest.min.js"></script>
<script id="ribbon" size="300" alpha="0.6" zindex="-1" src="/lib/canvas-ribbon/canvas-ribbon.js"></script>
<script src="/lib/jquery/index.js?v=3.4.1"></script>
<script src="/lib/velocity/velocity.min.js?v=1.2.1"></script>
<script src="/lib/velocity/velocity.ui.min.js?v=1.2.1"></script>
<script src="/lib/reading_progress/reading_progress.js"></script>
<script src="/js/utils.js?v=7.1.2"></script>
<script src="/js/motion.js?v=7.1.2"></script>
<script src="/js/affix.js?v=7.1.2"></script>
<script src="/js/schemes/pisces.js?v=7.1.2"></script>
<script src="/js/scrollspy.js?v=7.1.2"></script>
<script src="/js/post-details.js?v=7.1.2"></script>
<script src="/js/next-boot.js?v=7.1.2"></script>
<script src="/js/js.cookie.js?v=7.1.2"></script>
<script src="/js/scroll-cookie.js?v=7.1.2"></script>
<script src="/js/exturl.js?v=7.1.2"></script>
<script src="//cdn1.lncld.net/static/js/3.11.1/av-min.js"></script>
<script src="//unpkg.com/valine/dist/Valine.min.js"></script>
<script>
var GUEST = ['nick', 'mail', 'link'];
var guest = 'nick,mail,link';
guest = guest.split(',').filter(function(item) {
return GUEST.indexOf(item) > -1;
});
new Valine({
el: '#comments',
verify: true,
notify: true,
appId: '1N5rpk874DGudJw2wCL9J011-gzGzoHsz',
appKey: '9Y83e6suJgx567wtxhKy45IN',
placeholder: 'Just go go',
avatar: 'mm',
meta: guest,
pageSize: '10' || 10,
visitor: true,
lang: 'zk-cn' || 'zh-cn'
});
</script>
<script>
window.livereOptions = {
refer: 'Apriori算法简析.html'
};
(function(d, s) {
var j, e = d.getElementsByTagName(s)[0];
if (typeof LivereTower === 'function') { return; }
j = d.createElement(s);
j.src = 'https://cdn-city.livere.com/js/embed.dist.js';
j.async = true;
e.parentNode.insertBefore(j, e);
})(document, 'script');
</script>
<script>
// Popup Window;
var isfetched = false;
var isXml = true;
// Search DB path;
var search_path = "search.xml";
if (search_path.length === 0) {
search_path = "search.xml";
} else if (/json$/i.test(search_path)) {
isXml = false;
}
var path = "/" + search_path;
// monitor main search box;
var onPopupClose = function (e) {
$('.popup').hide();
$('#local-search-input').val('');
$('.search-result-list').remove();
$('#no-result').remove();
$(".local-search-pop-overlay").remove();
$('body').css('overflow', '');
}
function proceedsearch() {
$("body")
.append('<div class="search-popup-overlay local-search-pop-overlay"></div>')
.css('overflow', 'hidden');
$('.search-popup-overlay').click(onPopupClose);
$('.popup').toggle();
var $localSearchInput = $('#local-search-input');
$localSearchInput.attr("autocapitalize", "none");
$localSearchInput.attr("autocorrect", "off");
$localSearchInput.focus();
}
// search function;
var searchFunc = function(path, search_id, content_id) {
'use strict';
// start loading animation
$("body")
.append('<div class="search-popup-overlay local-search-pop-overlay">' +
'<div id="search-loading-icon">' +
'<i class="fa fa-spinner fa-pulse fa-5x fa-fw"></i>' +
'</div>' +
'</div>')
.css('overflow', 'hidden');
$("#search-loading-icon").css('margin', '20% auto 0 auto').css('text-align', 'center');
$.ajax({
url: path,
dataType: isXml ? "xml" : "json",
async: true,
success: function(res) {
// get the contents from search data
isfetched = true;
$('.popup').detach().appendTo('.header-inner');
var datas = isXml ? $("entry", res).map(function() {
return {
title: $("title", this).text(),
content: $("content",this).text(),
url: $("url" , this).text()
};
}).get() : res;
var input = document.getElementById(search_id);
var resultContent = document.getElementById(content_id);
var inputEventFunction = function() {
var searchText = input.value.trim().toLowerCase();
var keywords = searchText.split(/[\s\-]+/);
if (keywords.length > 1) {
keywords.push(searchText);
}
var resultItems = [];
if (searchText.length > 0) {
// perform local searching
datas.forEach(function(data) {
var isMatch = false;
var hitCount = 0;
var searchTextCount = 0;
var title = data.title.trim();
var titleInLowerCase = title.toLowerCase();
var content = data.content.trim().replace(/<[^>]+>/g,"");
var contentInLowerCase = content.toLowerCase();
var articleUrl = decodeURIComponent(data.url).replace(/\/{2,}/g, '/');
var indexOfTitle = [];
var indexOfContent = [];
// only match articles with not empty titles
if(title != '') {
keywords.forEach(function(keyword) {
function getIndexByWord(word, text, caseSensitive) {
var wordLen = word.length;
if (wordLen === 0) {
return [];
}
var startPosition = 0, position = [], index = [];
if (!caseSensitive) {
text = text.toLowerCase();
word = word.toLowerCase();
}
while ((position = text.indexOf(word, startPosition)) > -1) {
index.push({position: position, word: word});
startPosition = position + wordLen;
}
return index;
}
indexOfTitle = indexOfTitle.concat(getIndexByWord(keyword, titleInLowerCase, false));
indexOfContent = indexOfContent.concat(getIndexByWord(keyword, contentInLowerCase, false));
});
if (indexOfTitle.length > 0 || indexOfContent.length > 0) {
isMatch = true;
hitCount = indexOfTitle.length + indexOfContent.length;
}
}
// show search results
if (isMatch) {
// sort index by position of keyword
[indexOfTitle, indexOfContent].forEach(function (index) {
index.sort(function (itemLeft, itemRight) {
if (itemRight.position !== itemLeft.position) {
return itemRight.position - itemLeft.position;
} else {
return itemLeft.word.length - itemRight.word.length;
}
});
});
// merge hits into slices
function mergeIntoSlice(text, start, end, index) {
var item = index[index.length - 1];
var position = item.position;
var word = item.word;
var hits = [];
var searchTextCountInSlice = 0;
while (position + word.length <= end && index.length != 0) {
if (word === searchText) {
searchTextCountInSlice++;
}
hits.push({position: position, length: word.length});
var wordEnd = position + word.length;
// move to next position of hit
index.pop();
while (index.length != 0) {
item = index[index.length - 1];
position = item.position;
word = item.word;
if (wordEnd > position) {
index.pop();
} else {
break;
}
}
}
searchTextCount += searchTextCountInSlice;
return {
hits: hits,
start: start,
end: end,
searchTextCount: searchTextCountInSlice
};
}
var slicesOfTitle = [];
if (indexOfTitle.length != 0) {
slicesOfTitle.push(mergeIntoSlice(title, 0, title.length, indexOfTitle));
}
var slicesOfContent = [];
while (indexOfContent.length != 0) {
var item = indexOfContent[indexOfContent.length - 1];
var position = item.position;
var word = item.word;
// cut out 100 characters
var start = position - 20;
var end = position + 80;
if(start < 0){
start = 0;
}
if (end < position + word.length) {
end = position + word.length;
}
if(end > content.length){
end = content.length;
}
slicesOfContent.push(mergeIntoSlice(content, start, end, indexOfContent));
}
// sort slices in content by search text's count and hits' count
slicesOfContent.sort(function (sliceLeft, sliceRight) {
if (sliceLeft.searchTextCount !== sliceRight.searchTextCount) {
return sliceRight.searchTextCount - sliceLeft.searchTextCount;
} else if (sliceLeft.hits.length !== sliceRight.hits.length) {
return sliceRight.hits.length - sliceLeft.hits.length;
} else {
return sliceLeft.start - sliceRight.start;
}
});
// select top N slices in content
var upperBound = parseInt('1');
if (upperBound >= 0) {
slicesOfContent = slicesOfContent.slice(0, upperBound);
}
// highlight title and content
function highlightKeyword(text, slice) {
var result = '';
var prevEnd = slice.start;
slice.hits.forEach(function (hit) {
result += text.substring(prevEnd, hit.position);
var end = hit.position + hit.length;
result += '<b class="search-keyword">' + text.substring(hit.position, end) + '</b>';
prevEnd = end;
});
result += text.substring(prevEnd, slice.end);
return result;
}
var resultItem = '';
if (slicesOfTitle.length != 0) {
resultItem += "<li><a href='" + articleUrl + "' class='search-result-title'>" + highlightKeyword(title, slicesOfTitle[0]) + "</a>";
} else {
resultItem += "<li><a href='" + articleUrl + "' class='search-result-title'>" + title + "</a>";
}
slicesOfContent.forEach(function (slice) {
resultItem += "<a href='" + articleUrl + "'>" +
"<p class=\"search-result\">" + highlightKeyword(content, slice) +
"...</p>" + "</a>";
});
resultItem += "</li>";
resultItems.push({
item: resultItem,
searchTextCount: searchTextCount,
hitCount: hitCount,
id: resultItems.length
});
}
})
};
if (keywords.length === 1 && keywords[0] === "") {
resultContent.innerHTML = '<div id="no-result"><i class="fa fa-search fa-5x"></i></div>'
} else if (resultItems.length === 0) {
resultContent.innerHTML = '<div id="no-result"><i class="fa fa-frown-o fa-5x"></i></div>'
} else {
resultItems.sort(function (resultLeft, resultRight) {
if (resultLeft.searchTextCount !== resultRight.searchTextCount) {
return resultRight.searchTextCount - resultLeft.searchTextCount;
} else if (resultLeft.hitCount !== resultRight.hitCount) {
return resultRight.hitCount - resultLeft.hitCount;
} else {
return resultRight.id - resultLeft.id;
}
});
var searchResultList = '<ul class=\"search-result-list\">';
resultItems.forEach(function (result) {
searchResultList += result.item;
})
searchResultList += "</ul>";
resultContent.innerHTML = searchResultList;
}
}
if ('auto' === 'auto') {
input.addEventListener('input', inputEventFunction);
} else {
$('.search-icon').click(inputEventFunction);
input.addEventListener('keypress', function (event) {
if (event.keyCode === 13) {
inputEventFunction();
}
});
}
// remove loading animation
$(".local-search-pop-overlay").remove();
$('body').css('overflow', '');
proceedsearch();
}
});
}
// handle and trigger popup window;
$('.popup-trigger').click(function(e) {
e.stopPropagation();
if (isfetched === false) {
searchFunc(path, 'local-search-input', 'local-search-result');
} else {
proceedsearch();
};
});
$('.popup-btn-close').click(onPopupClose);
$('.popup').click(function(e){
e.stopPropagation();
});
$(document).on('keyup', function (event) {
var shouldDismissSearchPopup = event.which === 27 &&
$('.search-popup').is(':visible');
if (shouldDismissSearchPopup) {
onPopupClose();
}
});
</script>
<script src="https://www.gstatic.com/firebasejs/4.6.0/firebase.js"></script>
<script src="https://www.gstatic.com/firebasejs/4.6.0/firebase-firestore.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/bluebird/3.5.1/bluebird.core.min.js"></script>
<script>
(function () {
firebase.initializeApp({
apiKey: '',
projectId: ''
})
function getCount(doc, increaseCount) {
//increaseCount will be false when not in article page
return doc.get().then(function (d) {
var count
if (!d.exists) { //has no data, initialize count
if (increaseCount) {
doc.set({
count: 1
})
count = 1
}
else {
count = 0
}
}
else { //has data
count = d.data().count
if (increaseCount) {
if (!(window.localStorage && window.localStorage.getItem(title))) { //if first view this article
doc.set({ //increase count
count: count + 1
})
count++
}
}
}
if (window.localStorage && increaseCount) { //mark as visited
localStorage.setItem(title, true)
}
return count
})
}
function appendCountTo(el) {
return function (count) {
$(el).append(
$('<span>').addClass('post-visitors-count').append(
$('<span>').addClass('post-meta-divider').text('|')
).append(
$('<span>').addClass('post-meta-item-icon').append(
$('<i>').addClass('fa fa-users')
)
).append($('<span>').text('阅读次数 ' + count))
)
}
}
var db = firebase.firestore()
var articles = db.collection('articles')
//https://hexo.io/docs/variables.html
var isPost = 'Apriori算法简析'.length > 0
var isArchive = '' === 'true'
var isCategory = ''.length > 0
var isTag = ''.length > 0
if (isPost) { //is article page
var title = 'Apriori算法简析'
var doc = articles.doc(title)
getCount(doc, true).then(appendCountTo($('.post-meta')))
}
else if (!isArchive && !isCategory && !isTag) { //is index page
var titles = [] //array to titles
var postsstr = '' //if you have a better way to get titles of posts, please change it
eval(postsstr)
var promises = titles.map(function (title) {
return articles.doc(title)
}).map(function (doc) {
return getCount(doc)
})
Promise.all(promises).then(function (counts) {
var metas = $('.post-meta')
counts.forEach(function (val, idx) {
appendCountTo(metas[idx])(val)
})
})
}
})()
</script>
<script>
if ($('body').find('div.pdf').length) {
$.ajax({
type: 'GET',
url: '//cdn.jsdelivr.net/npm/pdfobject@2/pdfobject.min.js',
dataType: 'script',
cache: true,
success: function() {
$('body').find('div.pdf').each(function(i, o) {
PDFObject.embed($(o).attr('target'), $(o), {
pdfOpenParams: {
navpanes: 0,
toolbar: 0,
statusbar: 0,
pagemode: 'thumbs',
view: 'FitH'
},
PDFJS_URL: '/lib/pdf/web/viewer.html',
height: $(o).attr('height') || '500px'
});
});
},
});
}
</script>
<script>
if ($('body').find('pre.mermaid').length) {
$.ajax({
type: 'GET',
url: '//cdn.jsdelivr.net/npm/mermaid@8/dist/mermaid.min.js',
dataType: 'script',
cache: true,
success: function() {
mermaid.initialize({
theme: 'dark',
logLevel: 3,
flowchart: { curve: 'linear' },
gantt: { axisFormat: '%m/%d/%Y' },
sequence: { actorMargin: 50 }
});
}
});
}
</script>
<script>
(function(){
var bp = document.createElement('script');
var curProtocol = window.location.protocol.split(':')[0];
bp.src = (curProtocol === 'https') ? 'https://zz.bdstatic.com/linksubmit/push.js' : 'http://push.zhanzhang.baidu.com/push.js';
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(bp, s);
})();
</script>
<script src="/lib/bookmark/bookmark.min.js?v=1.0"></script>
<script>
bookmark.scrollToMark('auto', "#更多");
</script>
<script>
$('.highlight').not('.gist .highlight').each(function(i, e) {
var $wrap = $('<div>').addClass('highlight-wrap');
$(e).after($wrap);
$wrap.append($('<button>').addClass('copy-btn').append('复制').on('click', function(e) {
var code = $(this).parent().find('.code').find('.line').map(function(i, e) {
return $(e).text();
}).toArray().join('\n');
var ta = document.createElement('textarea');
var yPosition = window.pageYOffset || document.documentElement.scrollTop;
ta.style.top = yPosition + 'px'; // Prevent page scroll
ta.style.position = 'absolute';
ta.style.opacity = '0';
ta.readOnly = true;
ta.value = code;
document.body.appendChild(ta);
const selection = document.getSelection();
const selected = selection.rangeCount > 0 ? selection.getRangeAt(0) : false;
ta.select();
ta.setSelectionRange(0, code.length);
ta.readOnly = false;
var result = document.execCommand('copy');
if (result) $(this).text('复制成功');
else $(this).text('复制失败');
ta.blur(); // For iOS
$(this).blur();
if (selected) {
selection.removeAllRanges();
selection.addRange(selected);
}
})).on('mouseleave', function(e) {
var $b = $(this).find('.copy-btn');
setTimeout(function() {
$b.text('复制');
}, 300);
}).append(e);
})
</script>
</body>
</html>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。