代码拉取完成,页面将自动刷新
import torch
import torch.nn as nn
from torch.tensor import Tensor
from typing import Optional, Tuple, Union
def hopfield_core_forward(query, # type: Tensor
key, # type: Tensor
value, # type: Tensor
embed_dim_to_check, # type: int
num_heads, # type: int
in_proj_weight, # type: Optional[Tensor]
in_proj_bias, # type: Optional[Tensor]
bias_k, # type: Optional[Tensor]
bias_v, # type: Optional[Tensor]
add_zero_attn, # type: bool
dropout_p, # type: float
out_proj_weight, # type: Tensor
out_proj_bias, # type: Tensor
training=True, # type: bool
key_padding_mask=None, # type: Optional[Tensor]
need_weights=True, # type: bool
attn_mask=None, # type: Optional[Tensor]
use_separate_proj_weight=False, # type: bool
q_proj_weight=None, # type: Optional[Tensor]
k_proj_weight=None, # type: Optional[Tensor]
v_proj_weight=None, # type: Optional[Tensor]
static_k=None, # type: Optional[Tensor]
static_v=None, # type: Optional[Tensor]
key_as_static=False, # type: bool
query_as_static=False, # type: bool
value_as_static=False, # type: bool
normalize_pattern=False, # type: bool
p_norm_weight=None, # type: Optional[Tensor]
p_norm_bias=None, # type: Optional[Tensor]
head_dim=None, # type: Optional[int]
scaling=None, # type: Optional[Union[float, Tensor]]
update_steps_max=0, # type: Optional[Union[int, Tensor]]
update_steps_eps=1e-4, # type: Union[float, Tensor]
return_raw_associations=False, # type: bool
return_projected_patterns=False # type: bool
):
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
See "Hopfield Networks is All You Need" for more details in the setting of Hopfield networks.
embed_dim_to_check: total dimension of the model (in case of default head dimension).
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
key_as_static: interpret specified key as being static.
query_as_static: interpret specified key as being static.
value_as_static: interpret specified key as being static.
normalize_pattern: enable normalisation of patterns.
p_norm_weight, p_norm_bias: pattern normalisation weight and bias.
head_dim: dimensionality of each head.
scaling: scaling of association heads, often represented as beta (one entry per head).
update_steps_max: maximum count of association update steps (None equals to infinity).
update_steps_eps: minimum difference threshold between two consecutive association update steps.
return_raw_associations: return raw association (softmax) values, unmodified.
return_projected_patterns: return pattern projection values, unmodified.
Shape:
Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, head_dim)`, where S is the source sequence length, N is the batch size.
- static_v: :math:`(N*num_heads, S, head_dim)`, where S is the source sequence length, N is the batch size.
- scaling: :math:`(num_heads,)`, where num_heads is the amount of heads.
Outputs:
- attn_output: :math:`(L, N, E)`, where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)`, where N is the batch size,
L is the target sequence length, S is the source sequence length.
- attn_raw: :math:``(N, num_heads, L, S)`, where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
if not torch.jit.is_scripting():
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v,
out_proj_weight, out_proj_bias)
if any([type(t) is not Tensor for t in tens_ops]) and nn.functional.has_torch_function(tens_ops):
return nn.functional.handle_torch_function(
hopfield_core_forward, tens_ops, query, key, value,
embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight,
out_proj_bias, training=training, key_padding_mask=key_padding_mask,
need_weights=need_weights, attn_mask=attn_mask,
use_separate_proj_weight=use_separate_proj_weight,
q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v,
key_as_static=key_as_static, query_as_static=query_as_static,
value_as_static=value_as_static, normalize_pattern=normalize_pattern,
p_norm_weight=p_norm_weight, p_norm_bias=p_norm_bias,
head_dim=head_dim, scaling=scaling, update_steps_max=update_steps_max,
update_steps_eps=update_steps_eps, return_raw_associations=return_raw_associations)
tgt_len, bsz, embed_dim = query.shape[0], value.shape[1], query.shape[2]
assert embed_dim == embed_dim_to_check
# allow MHA to have different sizes for the feature dimension
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
assert (scaling is None) or (type(scaling) in (float, torch.Tensor))
if type(scaling) == torch.Tensor:
assert scaling.ndimension() == 1 and scaling.shape[0] == num_heads, "only one entry per head."
assert (update_steps_max is None) or (type(update_steps_max) in (int, torch.Tensor))
if type(update_steps_max) == torch.Tensor:
assert update_steps_max.ndimension() == 1 and update_steps_max.shape[0] == num_heads, "only one entry per head."
elif type(update_steps_max) == int:
update_steps_max = torch.tensor([update_steps_max] * num_heads, dtype=torch.int32, device=query.device)
elif update_steps_max is None:
update_steps_max = -torch.ones(size=(num_heads,), dtype=torch.int32, device=query.device)
assert type(update_steps_eps) in (float, torch.Tensor)
if type(update_steps_eps) == torch.Tensor:
assert update_steps_eps.ndimension() == 1 and update_steps_eps.shape[0] == num_heads, "only one entry per head."
assert (update_steps_eps <= 0.0).sum() == 0, "only positive thresholds allowed."
update_steps_eps = update_steps_eps.to(device=query.device)
elif type(update_steps_eps) == float:
assert update_steps_eps > 0, "only positive thresholds allowed."
update_steps_eps = torch.tensor([update_steps_eps] * num_heads, dtype=query.dtype, device=query.device)
if head_dim is None:
hopfield_dim = embed_dim // num_heads
assert head_dim * num_heads == hopfield_dim, r'embed_dim must be divisible by num_heads.'
else:
hopfield_dim = num_heads * head_dim
q, k, v, xi, src_len = None, None, None, None, 0
update_step, xi_old, xi_difference_norm = 0, None, float(r'+inf')
update_active_heads = torch.tensor([[[True]]] * num_heads * bsz, device=query.device)
assert update_active_heads.any(), "at least one head needs to be active."
####################################################################################################################
# BEGIN HOPFIELD UPDATE ITERATION #
####################################################################################################################
while update_active_heads.any():
# The query is already projected into the "Hopfield" space at "update_step" equals 0.
# No more projection necessary if "update_step" greater than 0.
if update_step == 0:
if not use_separate_proj_weight:
if torch.equal(query, key) and torch.equal(key, value) and not (
key_as_static or query_as_static or value_as_static):
# self-attention
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
elif torch.equal(key, value) and not (key_as_static or value_as_static):
# encoder-decoder attention
_start, _end = 0, hopfield_dim
if query_as_static:
q = query.repeat(1, num_heads, 1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = nn.functional.linear(query, _w, _b)
_start = hopfield_dim
_end = None
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
else:
_start, _end = 0, hopfield_dim
if query_as_static:
q = query.repeat(1, num_heads, 1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = nn.functional.linear(query, _w, _b)
_start += hopfield_dim
_end += hopfield_dim
if key_as_static:
k = key.repeat(1, num_heads, 1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = nn.functional.linear(key, _w, _b)
_start += hopfield_dim
_end += hopfield_dim
if value_as_static:
v = value.repeat(1, num_heads, 1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
v = nn.functional.linear(value, _w, _b)
else:
_start, _end = 0, hopfield_dim
if query_as_static:
q = query.repeat(1, num_heads, 1)
else:
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == hopfield_dim and len2 == query.size(-1)
if in_proj_bias is not None:
q = nn.functional.linear(query, q_proj_weight_non_opt, in_proj_bias[_start:_end])
_start += hopfield_dim
_end += hopfield_dim
else:
q = nn.functional.linear(query, q_proj_weight_non_opt, in_proj_bias)
if key_as_static:
k = key.repeat(1, num_heads, 1)
else:
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == hopfield_dim and len2 == key.size(-1)
if in_proj_bias is not None:
k = nn.functional.linear(key, k_proj_weight_non_opt, in_proj_bias[_start:_end])
_start += hopfield_dim
_end += hopfield_dim
else:
k = nn.functional.linear(key, k_proj_weight_non_opt, in_proj_bias)
if value_as_static:
v = value.repeat(1, num_heads, 1)
else:
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == hopfield_dim and len2 == value.size(-1)
if in_proj_bias is not None:
v = nn.functional.linear(value, v_proj_weight_non_opt, in_proj_bias[_start:_end])
else:
v = nn.functional.linear(value, v_proj_weight_non_opt, in_proj_bias)
if attn_mask is not None:
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or \
attn_mask.dtype == torch.bool, \
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
if attn_mask.dtype == torch.uint8:
warnings.warn(
"Byte tensor for attn_mask in nn.HopfieldCore is deprecated. Use bool tensor instead.")
attn_mask = attn_mask.to(torch.bool)
if attn_mask.dim() == 2:
attn_mask = attn_mask.unsqueeze(0)
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
raise RuntimeError('The size of the 2D attn_mask is not correct.')
elif attn_mask.dim() == 3:
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
raise RuntimeError('The size of the 3D attn_mask is not correct.')
else:
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
# attn_mask's dim is 3 now.
# Optionally normalize patterns.
if normalize_pattern:
q = torch.nn.functional.layer_norm(
input=q.reshape(shape=(-1, head_dim)), normalized_shape=(head_dim,),
weight=p_norm_weight, bias=p_norm_bias).reshape(shape=q.shape)
k = torch.nn.functional.layer_norm(
input=k.reshape(shape=(-1, head_dim)), normalized_shape=(head_dim,),
weight=p_norm_weight, bias=p_norm_bias).reshape(shape=k.shape)
else:
active_xi = xi.masked_select(mask=update_active_heads).view(size=(-1, *xi.shape[1:]))
active_k = k.masked_select(mask=update_active_heads).view(size=(-1, *k.shape[1:]))
q = torch.masked_scatter(input=q, mask=update_active_heads, source=torch.bmm(active_xi, active_k))
# Optionally scale association heads (each head separately).
if type(scaling) == float:
q *= scaling
elif type(scaling) == torch.Tensor:
q *= scaling.unsqueeze(axis=1).repeat(repeats=(bsz, head_dim))
if update_step == 0:
# convert ByteTensor key_padding_mask to bool
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn(
"Byte tensor for key_padding_mask in nn.HopfieldCore is deprecated. Use bool tensor instead.")
key_padding_mask = key_padding_mask.to(torch.bool)
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None and key_as_static is None and value_as_static is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = nn.functional.pad(attn_mask, [0, 1])
if key_padding_mask is not None:
key_padding_mask = nn.functional.pad(key_padding_mask, [0, 1])
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
assert not key_as_static, "bias cannot be added to static key."
assert not value_as_static, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
q = q.contiguous().view(tgt_len, -1, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == head_dim
v = static_v
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if add_zero_attn:
src_len += 1
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = nn.functional.pad(attn_mask, [0, 1])
if key_padding_mask is not None:
key_padding_mask = nn.functional.pad(key_padding_mask, [0, 1])
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
else:
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
# Compute new xi for Hopfield retrieve iterations.
if xi is None:
xi = nn.functional.softmax(attn_output_weights, dim=-1)
else:
xi = torch.masked_scatter(input=xi, mask=update_active_heads, source=nn.functional.softmax(
attn_output_weights.masked_select(mask=update_active_heads).view(size=(-1, *xi.shape[1:])), dim=-1))
# Compute threshold-based stopping criterion for Hopfield retrieve iterations.
with torch.no_grad():
xi_active = xi.view(size=(bsz, num_heads, tgt_len, src_len))
update_active_heads = (update_step < update_steps_max) | (update_steps_max < 0)
if xi_old is not None:
update_active_heads &= ((xi_old - xi_active).norm(p=2, dim=(2, 3)).max(axis=0)[0]) > update_steps_eps
update_active_heads = update_active_heads.unsqueeze(dim=1).unsqueeze(dim=2).repeat(repeats=(bsz, 1, 1))
xi_old = xi_active
update_step += 1
####################################################################################################################
# END HOPFIELD UPDATE ITERATION #
####################################################################################################################
attn_output_weights = nn.functional.dropout(xi, p=dropout_p, training=training)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, hopfield_dim)
if out_proj_weight is not None:
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
xi = xi.view(bsz, num_heads, tgt_len, src_len) if return_raw_associations else None
v = v.view(bsz, num_heads, src_len, head_dim) if return_projected_patterns else None
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads, xi, v
else:
return attn_output, None, xi, v
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。