代码拉取完成,页面将自动刷新
import torch
import torch.nn as nn
from math import sqrt
from torch import Tensor
from torch.nn import Module
from typing import Optional, Tuple, Union
#from .activation import HopfieldCore
#from .functional import hopfield_core_forward
import sys
sys.path.append("../input/myhopfieldt/hopfield-layers/modules")
from activation import HopfieldCore
from functional import hopfield_core_forward
###
class Hopfield(Module):
"""
Module with underlying Hopfield association.
"""
def __init__(self,
input_size: int,
hidden_size: Optional[int] = None,
output_size: Optional[int] = None,
num_heads: int = 1,
scaling: Optional[Union[float, Tensor]] = None,
update_steps_max: Optional[Union[int, Tensor]] = 0,
update_steps_eps: Union[float, Tensor] = 1e-4,
normalize_stored_pattern: bool = True,
normalize_stored_pattern_affine: bool = True,
normalize_state_pattern: bool = True,
normalize_state_pattern_affine: bool = True,
normalize_pattern_projection: bool = True,
normalize_pattern_projection_affine: bool = True,
normalize_hopfield_space: bool = False,
normalize_hopfield_space_affine: bool = False,
stored_pattern_as_static: bool = False,
state_pattern_as_static: bool = False,
pattern_projection_as_static: bool = False,
stored_pattern_size: Optional[int] = None,
pattern_projection_size: Optional[int] = None,
batch_first: bool = True,
association_activation: Optional[str] = None,
dropout: float = 0.0,
input_bias: bool = True,
concat_bias_pattern: bool = False,
add_zero_association: bool = False,
disable_out_projection: bool = False
):
"""
Initialise new instance of a Hopfield module.
:param input_size: depth of the input (state pattern)
:param hidden_size: depth of the association space
:param output_size: depth of the output projection
:param num_heads: amount of parallel association heads
:param scaling: scaling of association heads, often represented as beta (one entry per head)
:param update_steps_max: maximum count of association update steps (None equals to infinity)
:param update_steps_eps: minimum difference threshold between two consecutive association update steps
:param normalize_stored_pattern: apply normalisation on stored patterns
:param normalize_stored_pattern_affine: additionally enable affine normalisation of stored patterns
:param normalize_state_pattern: apply normalisation on state patterns
:param normalize_state_pattern_affine: additionally enable affine normalisation of state patterns
:param normalize_pattern_projection: apply normalisation on the pattern projection
:param normalize_pattern_projection_affine: additionally enable affine normalisation of pattern projection
:param normalize_hopfield_space: enable normalisation of patterns in the Hopfield space
:param normalize_hopfield_space_affine: additionally enable affine normalisation of patterns in Hopfield space
:param stored_pattern_as_static: interpret specified stored patterns as being static
:param state_pattern_as_static: interpret specified state patterns as being static
:param pattern_projection_as_static: interpret specified pattern projections as being static
:param stored_pattern_size: depth of input (stored pattern)
:param pattern_projection_size: depth of input (pattern projection)
:param batch_first: flag for specifying if the first dimension of data fed to "forward" reflects the batch size
:param association_activation: additional activation to be applied on the result of the Hopfield association
:param dropout: dropout probability applied on the association matrix
:param input_bias: bias to be added to input (state and stored pattern as well as pattern projection)
:param concat_bias_pattern: bias to be concatenated to stored pattern as well as pattern projection
:param add_zero_association: add a new batch of zeros to stored pattern as well as pattern projection
:param disable_out_projection: disable output projection
"""
super(Hopfield, self).__init__()
assert type(batch_first) == bool, f'"batch_first" needs to be a boolean, not {type(batch_first)}.'
assert (association_activation is None) or (type(association_activation) == str)
# Initialise Hopfield association module.
self.association_core = HopfieldCore(
embed_dim=input_size, num_heads=num_heads, dropout=dropout, bias=input_bias,
add_bias_kv=concat_bias_pattern, add_zero_attn=add_zero_association, kdim=stored_pattern_size,
vdim=pattern_projection_size, head_dim=hidden_size, out_dim=output_size,
disable_out_projection=disable_out_projection, key_as_static=stored_pattern_as_static,
query_as_static=state_pattern_as_static, value_as_static=pattern_projection_as_static,
normalize_pattern=normalize_hopfield_space, normalize_pattern_affine=normalize_hopfield_space_affine)
self.association_activation = None
if association_activation is not None:
self.association_activation = getattr(torch, association_activation, None)
# Initialise stored pattern normalisation.
self.norm_stored_pattern = None
if normalize_stored_pattern_affine:
assert normalize_stored_pattern, "affine normalisation without normalisation has no effect."
if normalize_stored_pattern:
self.norm_stored_pattern = nn.LayerNorm(
normalized_shape=self.hidden_size if stored_pattern_as_static else self.association_core.kdim,
elementwise_affine=normalize_stored_pattern_affine)
# Initialise state pattern normalisation.
self.norm_state_pattern = None
if normalize_state_pattern_affine:
assert normalize_state_pattern, "affine normalisation without normalisation has no effect."
if normalize_state_pattern:
self.norm_state_pattern = nn.LayerNorm(
normalized_shape=self.hidden_size if state_pattern_as_static else self.association_core.embed_dim,
elementwise_affine=normalize_state_pattern_affine)
# Initialise pattern projection normalisation.
self.norm_pattern_projection = None
if normalize_pattern_projection_affine:
assert normalize_pattern_projection, "affine normalisation without normalisation has no effect."
if normalize_pattern_projection:
self.norm_pattern_projection = nn.LayerNorm(
normalized_shape=self.hidden_size if pattern_projection_as_static else self.association_core.vdim,
elementwise_affine=normalize_pattern_projection_affine)
# Initialise remaining auxiliary properties.
assert self.association_core.head_dim > 0, f'invalid hidden dimension encountered.'
self.__batch_first = batch_first
self.__scaling = (1.0 / sqrt(self.association_core.head_dim)) if scaling is None else scaling
self.__update_steps_max = update_steps_max
self.__update_steps_eps = update_steps_eps
def _maybe_transpose(self, *args: Tuple[Tensor, ...]) -> Union[Tensor, Tuple[Tensor, ...]]:
"""
Eventually transpose specified data.
:param args: tensors to eventually transpose (dependent on the state of "batch_first")
:return: eventually transposed tensors
"""
transposed_result = tuple(_.transpose(0, 1) for _ in args) if self.__batch_first else args
return transposed_result[0] if len(transposed_result) == 1 else transposed_result
def _associate(self, data: Union[Tensor, Tuple[Tensor, Tensor, Tensor]],
return_raw_associations: bool = False, return_projected_patterns: bool = False,
stored_pattern_padding_mask: Optional[Tensor] = None,
association_mask: Optional[Tensor] = None) -> Tuple[Optional[Tensor], ...]:
"""
Apply Hopfield association module on specified data.
:param data: data to be processed by Hopfield core module
:param return_raw_associations: return raw association (softmax) values, unmodified
:param return_projected_patterns: return pattern projection values, unmodified
:param stored_pattern_padding_mask: mask to be applied on stored patterns
:param association_mask: mask to be applied on inner association matrix
:return: Hopfield-processed input data
"""
assert (type(data) == Tensor) or ((type(data) == tuple) and (len(data) == 3)), \
r'either one tensor to be used as "stored pattern", "state pattern" and' \
r' "pattern_projection" must be provided, or three separate ones.'
if type(data) == Tensor:
stored_pattern, state_pattern, pattern_projection = data, data, data
else:
stored_pattern, state_pattern, pattern_projection = data
# Optionally transpose data.
stored_pattern, state_pattern, pattern_projection = self._maybe_transpose(
stored_pattern, state_pattern, pattern_projection)
# Optionally apply stored pattern normalisation.
if self.norm_stored_pattern is not None:
stored_pattern = self.norm_stored_pattern(input=stored_pattern.reshape(
shape=(-1, stored_pattern.shape[2]))).reshape(shape=stored_pattern.shape)
# Optionally apply state pattern normalisation.
if self.norm_state_pattern is not None:
state_pattern = self.norm_state_pattern(input=state_pattern.reshape(
shape=(-1, state_pattern.shape[2]))).reshape(shape=state_pattern.shape)
# Optionally apply pattern projection normalisation.
if self.norm_pattern_projection is not None:
pattern_projection = self.norm_pattern_projection(input=pattern_projection.reshape(
shape=(-1, pattern_projection.shape[2]))).reshape(shape=pattern_projection.shape)
# Apply Hopfield association and optional activation function.
return self.association_core(
query=state_pattern, key=stored_pattern, value=pattern_projection,
key_padding_mask=stored_pattern_padding_mask, need_weights=False, attn_mask=association_mask,
scaling=self.__scaling, update_steps_max=self.__update_steps_max, update_steps_eps=self.__update_steps_eps,
return_raw_associations=return_raw_associations, return_pattern_projections=return_projected_patterns)
def forward(self, input: Union[Tensor, Tuple[Tensor, Tensor, Tensor]],
stored_pattern_padding_mask: Optional[Tensor] = None,
association_mask: Optional[Tensor] = None) -> Tensor:
"""
Apply Hopfield association on specified data.
:param input: data to be processed by Hopfield association module
:param stored_pattern_padding_mask: mask to be applied on stored patterns
:param association_mask: mask to be applied on inner association matrix
:return: Hopfield-processed input data
"""
association_output = self._maybe_transpose(self._associate(
data=input, return_raw_associations=False,
stored_pattern_padding_mask=stored_pattern_padding_mask,
association_mask=association_mask)[0])
if self.association_activation is not None:
association_output = self.association_activation(association_output)
return association_output
def get_association_matrix(self, input: Union[Tensor, Tuple[Tensor, Tensor, Tensor]],
stored_pattern_padding_mask: Optional[Tensor] = None,
association_mask: Optional[Tensor] = None) -> Tensor:
"""
Fetch Hopfield association matrix gathered by passing through the specified data.
:param input: data to be passed through the Hopfield association
:param stored_pattern_padding_mask: mask to be applied on stored patterns
:param association_mask: mask to be applied on inner association matrix
:return: association matrix as computed by the Hopfield core module
"""
with torch.no_grad():
return self._associate(
data=input, return_raw_associations=True,
stored_pattern_padding_mask=stored_pattern_padding_mask,
association_mask=association_mask)[2]
def get_projected_pattern_matrix(self, input: Union[Tensor, Tuple[Tensor, Tensor, Tensor]],
stored_pattern_padding_mask: Optional[Tensor] = None,
association_mask: Optional[Tensor] = None) -> Tensor:
"""
Fetch Hopfield projected pattern matrix gathered by passing through the specified data.
:param input: data to be passed through the Hopfield association
:param stored_pattern_padding_mask: mask to be applied on stored patterns
:param association_mask: mask to be applied on inner association matrix
:return: pattern projection matrix as computed by the Hopfield core module
"""
with torch.no_grad():
return self._associate(
data=input, return_projected_patterns=True,
stored_pattern_padding_mask=stored_pattern_padding_mask,
association_mask=association_mask)[3]
@property
def batch_first(self) -> bool:
return self.__batch_first
@property
def scaling(self) -> Union[float, Tensor]:
return self.__scaling.clone() if type(self.__scaling) == Tensor else self.__scaling
@property
def stored_pattern_dim(self) -> int:
return self.association_core.kdim
@property
def state_pattern_dim(self) -> int:
return self.association_core.embed_dim
@property
def pattern_projection_dim(self) -> int:
return self.association_core.vdim
@property
def input_size(self) -> int:
return self.state_pattern_dim
@property
def hidden_size(self) -> int:
return self.association_core.head_dim
@property
def output_size(self):
return self.association_core.out_dim
@property
def update_steps_max(self) -> Optional[Union[int, Tensor]]:
return self.__update_steps_max.clone() if type(self.__update_steps_max) == Tensor else self.__update_steps_max
@property
def update_steps_eps(self) -> Optional[Union[float, Tensor]]:
return self.__update_steps_eps.clone() if type(self.__update_steps_eps) == Tensor else self.__update_steps_eps
@property
def stored_pattern_as_static(self) -> bool:
return self.association_core.key_as_static
@property
def state_pattern_as_static(self) -> bool:
return self.association_core.query_as_static
@property
def pattern_projection_as_static(self) -> bool:
return self.association_core.value_as_static
@property
def normalize_stored_pattern(self) -> bool:
return self.norm_stored_pattern is not None
@property
def normalize_stored_pattern_affine(self) -> bool:
return self.normalize_stored_pattern and self.norm_stored_pattern.elementwise_affine
@property
def normalize_state_pattern(self) -> bool:
return self.norm_state_pattern is not None
@property
def normalize_state_pattern_affine(self) -> bool:
return self.normalize_state_pattern and self.norm_state_pattern.elementwise_affine
@property
def normalize_pattern_projection(self) -> bool:
return self.norm_pattern_projection is not None
@property
def normalize_pattern_projection_affine(self) -> bool:
return self.normalize_pattern_projection and self.norm_pattern_projection.elementwise_affine
class StatePattern(Module):
"""
Wrapper class to be used in case of static state patterns.
"""
def __init__(self,
size: int,
quantity: int = 1,
batch_first: bool = True,
trainable: bool = True
):
"""
Initialise a new instance of a state pattern wrapper.
:param size: depth of a state pattern
:param quantity: amount of state patterns
:param batch_first: flag for specifying if the first dimension of data fed to "forward" reflects the batch size
:param trainable: state patterns are trainable
"""
super(StatePattern, self).__init__()
self.__batch_first = batch_first
self.state_pattern = nn.Parameter(torch.empty(size=(quantity, 1, size)), requires_grad=trainable)
self._reset_parameters()
def _reset_parameters(self) -> None:
"""
Initialise parameters of state pattern tensor.
:return: None
"""
nn.init.normal_(self.state_pattern, mean=0.0, std=0.02)
def forward(self, input: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
"""
Wrap internal state pattern and external input.
:param input: external input to pass-through as stored pattern and pattern projection
:return: tuple containing stored and state pattern as well as pattern projection
"""
if self.__batch_first:
state_pattern_expanded = self.state_pattern.expand(
size=(self.state_pattern.shape[0], input.shape[0], self.state_pattern.shape[2])).transpose(0, 1)
else:
state_pattern_expanded = self.state_pattern.expand(
size=(self.state_pattern.shape[0], input.shape[1], self.state_pattern.shape[2]))
return input, state_pattern_expanded, input
@property
def batch_first(self) -> bool:
return self.__batch_first
@property
def quantity(self) -> int:
return self.state_pattern.shape[0]
@property
def output_size(self) -> int:
return self.state_pattern.shape[2]
class HopfieldPooling(Module):
"""
Wrapper class encapsulating "StatePattern" and "Hopfield" in one combined module
to be used as a Hopfield-based pooling layer.
"""
def __init__(self,
input_size: int,
hidden_size: Optional[int] = None,
output_size: Optional[int] = None,
num_heads: int = 1,
scaling: Optional[Union[float, Tensor]] = None,
update_steps_max: Optional[Union[int, Tensor]] = 0,
update_steps_eps: Union[float, Tensor] = 1e-4,
normalize_stored_pattern: bool = True,
normalize_stored_pattern_affine: bool = True,
normalize_state_pattern: bool = True,
normalize_state_pattern_affine: bool = True,
normalize_pattern_projection: bool = True,
normalize_pattern_projection_affine: bool = True,
normalize_hopfield_space: bool = False,
normalize_hopfield_space_affine: bool = False,
stored_pattern_as_static: bool = False,
pattern_projection_as_static: bool = False,
stored_pattern_size: Optional[int] = None,
pattern_projection_size: Optional[int] = None,
batch_first: bool = True,
association_activation: Optional[str] = None,
dropout: float = 0.0,
input_bias: bool = True,
concat_bias_pattern: bool = False,
add_zero_association: bool = False,
disable_out_projection: bool = False,
quantity: int = 1,
trainable: bool = True
):
"""
Initialise a new instance of a Hopfield-based pooling layer.
:param input_size: depth of the input (state pattern)
:param hidden_size: depth of the association space
:param output_size: depth of the output projection
:param num_heads: amount of parallel association heads
:param scaling: scaling of association heads, often represented as beta (one entry per head)
:param update_steps_max: maximum count of association update steps (None equals to infinity)
:param update_steps_eps: minimum difference threshold between two consecutive association update steps
:param normalize_stored_pattern: apply normalisation on stored patterns
:param normalize_stored_pattern_affine: additionally enable affine normalisation of stored patterns
:param normalize_state_pattern: apply normalisation on state patterns
:param normalize_state_pattern_affine: additionally enable affine normalisation of state patterns
:param normalize_pattern_projection: apply normalisation on the pattern projection
:param normalize_pattern_projection_affine: additionally enable affine normalisation of pattern projection
:param normalize_hopfield_space: enable normalisation of patterns in the Hopfield space
:param normalize_hopfield_space_affine: additionally enable affine normalisation of patterns in Hopfield space
:param stored_pattern_as_static: interpret specified stored patterns as being static
:param state_pattern_as_static: interpret specified state patterns as being static
:param pattern_projection_as_static: interpret specified pattern projections as being static
:param stored_pattern_size: depth of input (stored pattern)
:param pattern_projection_size: depth of input (pattern projection)
:param batch_first: flag for specifying if the first dimension of data fed to "forward" reflects the batch size
:param association_activation: additional activation to be applied on the result of the Hopfield association
:param dropout: dropout probability applied on the association matrix
:param input_bias: bias to be added to input (state and stored pattern as well as pattern projection)
:param concat_bias_pattern: bias to be concatenated to stored pattern as well as pattern projection
:param add_zero_association: add a new batch of zeros to stored pattern as well as pattern projection
:param disable_out_projection: disable output projection
:param quantity: amount of state patterns
:param trainable: state pattern used for pooling is trainable
"""
super(HopfieldPooling, self).__init__()
self.hopfield = Hopfield(
input_size=input_size, hidden_size=hidden_size, output_size=output_size, num_heads=num_heads,
scaling=scaling, update_steps_max=update_steps_max, update_steps_eps=update_steps_eps,
normalize_stored_pattern=normalize_stored_pattern,
normalize_stored_pattern_affine=normalize_stored_pattern_affine,
normalize_state_pattern=normalize_state_pattern,
normalize_state_pattern_affine=normalize_state_pattern_affine,
normalize_pattern_projection=normalize_pattern_projection,
normalize_pattern_projection_affine=normalize_pattern_projection_affine,
normalize_hopfield_space=normalize_hopfield_space,
normalize_hopfield_space_affine=normalize_hopfield_space_affine,
stored_pattern_as_static=stored_pattern_as_static, state_pattern_as_static=True,
pattern_projection_as_static=pattern_projection_as_static, stored_pattern_size=stored_pattern_size,
pattern_projection_size=pattern_projection_size, batch_first=batch_first,
association_activation=association_activation, dropout=dropout, input_bias=input_bias,
concat_bias_pattern=concat_bias_pattern, add_zero_association=add_zero_association,
disable_out_projection=disable_out_projection)
self.pooling_weights = StatePattern(
size=self.hopfield.hidden_size, quantity=quantity, batch_first=batch_first, trainable=trainable)
def forward(self, input: Tensor, stored_pattern_padding_mask: Optional[Tensor] = None,
association_mask: Optional[Tensor] = None) -> Tensor:
"""
Compute Hopfield-based pooling on specified data.
:param input: data to be pooled
:param stored_pattern_padding_mask: mask to be applied on stored patterns
:param association_mask: mask to be applied on inner association matrix
:return: Hopfield-pooled input data
"""
return self.hopfield(
input=self.pooling_weights(input=input),
stored_pattern_padding_mask=stored_pattern_padding_mask,
association_mask=association_mask).flatten(start_dim=1)
def get_association_matrix(self, input: Tensor, stored_pattern_padding_mask: Optional[Tensor] = None,
association_mask: Optional[Tensor] = None) -> Tensor:
"""
Fetch Hopfield association matrix used for pooling gathered by passing through the specified data.
:param input: data to be passed through the Hopfield association
:param stored_pattern_padding_mask: mask to be applied on stored patterns
:param association_mask: mask to be applied on inner association matrix
:return: association matrix as computed by the Hopfield core module
"""
with torch.no_grad():
return self.hopfield.get_association_matrix(
input=self.pooling_weights(input=input),
stored_pattern_padding_mask=stored_pattern_padding_mask,
association_mask=association_mask)
def get_projected_pattern_matrix(self, input: Tensor, stored_pattern_padding_mask: Optional[Tensor] = None,
association_mask: Optional[Tensor] = None) -> Tensor:
"""
Fetch Hopfield projected pattern matrix gathered by passing through the specified data.
:param input: data to be passed through the Hopfield association
:param stored_pattern_padding_mask: mask to be applied on stored patterns
:param association_mask: mask to be applied on inner association matrix
:return: pattern projection matrix as computed by the Hopfield core module
"""
with torch.no_grad():
return self.hopfield.get_projected_pattern_matrix(
input=self.pooling_weights(input=input),
stored_pattern_padding_mask=stored_pattern_padding_mask,
association_mask=association_mask)
@property
def batch_first(self) -> bool:
return self.hopfield.batch_first
@property
def scaling(self) -> Union[float, Tensor]:
return self.hopfield.scaling
@property
def stored_pattern_dim(self) -> int:
return self.hopfield.stored_pattern_dim
@property
def state_pattern_dim(self) -> int:
return self.hopfield.state_pattern_dim
@property
def pattern_projection_dim(self) -> int:
return self.hopfield.pattern_projection_dim
@property
def input_size(self) -> int:
return self.hopfield.input_size
@property
def hidden_size(self) -> int:
return self.hopfield.hidden_size
@property
def output_size(self):
return self.hopfield.output_size
@property
def update_steps_max(self) -> Optional[Union[int, Tensor]]:
return self.hopfield.update_steps_max
@property
def update_steps_eps(self) -> Optional[Union[float, Tensor]]:
return self.hopfield.update_steps_eps
@property
def stored_pattern_as_static(self) -> bool:
return self.hopfield.stored_pattern_as_static
@property
def state_pattern_as_static(self) -> bool:
return self.hopfield.state_pattern_as_static
@property
def pattern_projection_as_static(self) -> bool:
return self.hopfield.pattern_projection_as_static
@property
def normalize_stored_pattern(self) -> bool:
return self.hopfield.normalize_stored_pattern
@property
def normalize_stored_pattern_affine(self) -> bool:
return self.hopfield.normalize_stored_pattern_affine
@property
def normalize_state_pattern(self) -> bool:
return self.hopfield.normalize_state_pattern
@property
def normalize_state_pattern_affine(self) -> bool:
return self.hopfield.normalize_state_pattern_affine
@property
def normalize_pattern_projection(self) -> bool:
return self.hopfield.normalize_pattern_projection
@property
def normalize_pattern_projection_affine(self) -> bool:
return self.hopfield.normalize_pattern_projection_affine
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。