代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/DeepSpeech 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import itertools
import json
import numpy as np
import os
import pandas
import progressbar
import sys
import tables
import tensorflow as tf
from attrdict import AttrDict
from collections import namedtuple
from DeepSpeech import initialize_globals, create_flags, log_debug, log_info, log_warn, log_error, create_inference_graph, decode_with_lm
from multiprocessing import Pool
from six.moves import zip, range
from util.audio import audiofile_to_input_vector
from util.text import sparse_tensor_value_to_texts, text_to_char_array, Alphabet, ctc_label_dense_to_sparse, wer, levenshtein
from util.preprocess import pmap, preprocess
FLAGS = tf.app.flags.FLAGS
N_STEPS = 16
N_FEATURES = 26
N_CONTEXT = 9
def split_data(dataset, batch_size):
remainder = len(dataset) % batch_size
if remainder != 0:
dataset = dataset[:-remainder]
for i in range(0, len(dataset), batch_size):
yield dataset[i:i + batch_size]
def pad_to_dense(jagged):
maxlen = max(len(r) for r in jagged)
subshape = jagged[0].shape
padded = np.zeros((len(jagged), maxlen) +
subshape[1:], dtype=jagged[0].dtype)
for i, row in enumerate(jagged):
padded[i, :len(row)] = row
return padded
def process_decode_result(item):
label, decoding, distance, loss = item
sample_wer = wer(label, decoding)
return AttrDict({
'src': label,
'res': decoding,
'loss': loss,
'distance': distance,
'wer': sample_wer,
'levenshtein': levenshtein(label.split(), decoding.split()),
'label_length': float(len(label.split())),
})
def calculate_report(labels, decodings, distances, losses):
r'''
This routine will calculate a WER report.
It'll compute the `mean` WER and create ``Sample`` objects of the ``report_count`` top lowest
loss items from the provided WER results tuple (only items with WER!=0 and ordered by their WER).
'''
samples = pmap(process_decode_result, zip(labels, decodings, distances, losses))
total_levenshtein = sum(s.levenshtein for s in samples)
total_label_length = sum(s.label_length for s in samples)
# Getting the WER from the accumulated levenshteins and lengths
samples_wer = total_levenshtein / total_label_length
# Order the remaining items by their loss (lowest loss on top)
samples.sort(key=lambda s: s.loss)
# Then order by WER (highest WER on top)
samples.sort(key=lambda s: s.wer, reverse=True)
return samples_wer, samples
def main(_):
initialize_globals()
if not FLAGS.test_files:
log_error('You need to specify what files to use for evaluation via '
'the --test_files flag.')
exit(1)
global alphabet
alphabet = Alphabet(os.path.abspath(FLAGS.alphabet_config_path))
# sort examples by length, improves packing of batches and timesteps
test_data = preprocess(
FLAGS.test_files,
FLAGS.test_batch_size,
hdf5_dest_path=FLAGS.hdf5_test_set).sort_values(
by="features_len",
ascending=False)
with tf.Session() as session:
inputs, outputs = create_inference_graph(batch_size=FLAGS.test_batch_size, n_steps=N_STEPS)
seq_lengths_ph = tf.placeholder(tf.int32, [FLAGS.test_batch_size])
decode_logits_ph = tf.placeholder(tf.float32, [None, FLAGS.test_batch_size, alphabet.size() + 1])
labels_ph = tf.placeholder(tf.int32, [FLAGS.test_batch_size, None])
label_lengths_ph = tf.placeholder(tf.int32, [FLAGS.test_batch_size])
decoded, _ = decode_with_lm(decode_logits_ph,
seq_lengths_ph,
merge_repeated=False,
beam_width=FLAGS.beam_width)
sparse_labels = tf.cast(
ctc_label_dense_to_sparse(labels_ph, label_lengths_ph, FLAGS.test_batch_size),
tf.int32)
loss = tf.nn.ctc_loss(labels=sparse_labels,
inputs=decode_logits_ph,
sequence_length=seq_lengths_ph)
distance = tf.edit_distance(tf.cast(decoded[0], tf.int32), sparse_labels)
# Create a saver using variables from the above newly created graph
mapping = {v.op.name: v for v in tf.global_variables() if not v.op.name.startswith('previous_state_')}
saver = tf.train.Saver(mapping)
# Restore variables from training checkpoint
checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if not checkpoint:
log_error(
'Checkpoint directory ({}) does not contain a valid checkpoint state.'.format(
FLAGS.checkpoint_dir))
exit(1)
checkpoint_path = checkpoint.model_checkpoint_path
saver.restore(session, checkpoint_path)
logitses = []
batch_count = len(test_data) // FLAGS.test_batch_size
bar = progressbar.ProgressBar(
max_value=batch_count - 1,
widget=progressbar.AdaptiveETA)
for batch in bar(split_data(test_data, FLAGS.test_batch_size)):
session.run(outputs['initialize_state'])
batch_features = pad_to_dense(batch['features'].values)
batch_features_len = batch['features_len'].values
full_step_len = np.full_like(batch_features_len, N_STEPS)
logits = np.empty([0, FLAGS.test_batch_size, alphabet.size() + 1])
for i in range(0, batch_features.shape[1], N_STEPS):
chunk_features = batch_features[:, i:i + N_STEPS, :]
chunk_features_len = np.minimum(
batch_features_len, full_step_len)
# pad with zeros if the chunk does not have enough steps
steps_in_chunk = chunk_features.shape[1]
if steps_in_chunk < FLAGS.n_steps:
chunk_features = np.pad(chunk_features,
((0, 0),
(0, FLAGS.n_steps - steps_in_chunk),
(0, 0)),
mode='constant',
constant_values=0)
output = session.run(outputs['outputs'], feed_dict={
inputs['input']: chunk_features,
inputs['input_lengths']: chunk_features_len,
})
logits = np.concatenate((logits, output))
# we have processed N_STEPS so subtract from remaining steps
batch_features_len -= N_STEPS
# clip to zero
batch_features_len = np.maximum(batch_features_len, np.zeros_like(batch_features_len))
logitses.append(logits)
ground_truths = []
predictions = []
distances = []
losses = []
bar = progressbar.ProgressBar(max_value=batch_count - 1,
widget=progressbar.AdaptiveETA)
for logits, batch in bar(zip(logitses, split_data(test_data, FLAGS.test_batch_size))):
seq_lengths = batch['features_len'].values
labels = pad_to_dense(batch['transcript'].values)
label_lengths = batch['transcript_len'].values
decoded_, loss_, distance_, sparse_labels_ = session.run([decoded, loss, distance, sparse_labels], feed_dict={
decode_logits_ph: logits,
seq_lengths_ph: seq_lengths,
labels_ph: labels,
label_lengths_ph: label_lengths
})
ground_truths.extend(sparse_tensor_value_to_texts(sparse_labels_, alphabet))
predictions.extend(sparse_tensor_value_to_texts(decoded_[0], alphabet))
distances.extend(distance_)
losses.extend(loss_)
wer, samples = calculate_report(ground_truths, predictions, distances, losses)
mean_edit_distance = np.mean(distances)
mean_loss = np.mean(losses)
# Filter out all items with WER=0 and take only the first report_count items
report_samples = itertools.islice((s for s in samples if s.wer > 0), FLAGS.report_count)
print('Test - WER: %f, loss: %f, mean edit distance: %f' %
(wer, mean_loss, mean_edit_distance))
print('-' * 80)
for sample in report_samples:
print('WER: %f, loss: %f, mean edit distance: %f' %
(sample.wer, sample.loss, sample.distance))
print(' - src: "%s"' % sample.src)
print(' - res: "%s"' % sample.res)
print('-' * 80)
if FLAGS.test_output_file:
json.dump(samples, open(FLAGS.test_output_file, 'w'), default=lambda x: float(x))
if __name__ == '__main__':
create_flags()
tf.app.flags.DEFINE_string('hdf5_test_set', '', 'path to hdf5 file to cache test set features')
tf.app.flags.DEFINE_string('test_output_file', '', 'path to a file to save all src/decoded/distance/loss tuples')
tf.app.run(main)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。