加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
eco.hpp 3.21 KB
一键复制 编辑 原始数据 按行查看 历史
dou 提交于 2024-01-04 18:39 . first commit
#ifndef ECO_HPP
#define ECO_HPP
#include <iostream>
#include <string>
#include <math.h>
#include <algorithm>
#include <opencv2/core.hpp>
#include <opencv2/core/ocl.hpp>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/highgui/highgui_c.h>
#include <fstream>
#ifdef USE_CAFFE
#include <caffe/caffe.hpp>
#include <caffe/util/io.hpp>
#endif
/*
#ifdef USE_CUDA
#include <opencv2/opencv.hpp>
#include <opencv2/core/cuda.hpp>
#endif
*/
#ifdef USE_MULTI_THREAD
#include <pthread.h>
#include <unistd.h>
#endif
#include "parameters.hpp"
#include "interpolator.hpp"
#include "regularization_filter.hpp"
#include "feature_extractor.hpp"
#include "feature_operator.hpp"
#include "sample_update.hpp"
#include "optimize_scores.hpp"
#include "training.hpp"
#include "ffttools.hpp"
#include "scale_filter.hpp"
#include "debug.hpp"
namespace eco
{
class ECO
{
public:
ECO() {};
virtual ~ECO() {}
void init(cv::Mat &im, const cv::Rect2f &rect, const eco::EcoParameters &paramters);
bool update(const cv::Mat &frame, cv::Rect2f &roi);
void init_parameters(const eco::EcoParameters &parameters);
void init_features();
#ifdef USE_CAFFE
void read_deep_mean(const string &mean_file);
#endif
void yf_gaussian(); // the desired outputs of features, real part of (9) in paper C-COT
void cos_window(); // construct cosine window of features;
ECO_FEATS interpolate_dft(const ECO_FEATS &xlf,
vector<cv::Mat> &interp1_fs,
vector<cv::Mat> &interp2_fs);
ECO_FEATS compact_fourier_coeff(const ECO_FEATS &xf);
ECO_FEATS full_fourier_coeff(const ECO_FEATS &xf);
vector<cv::Mat> project_mat_energy(vector<cv::Mat> proj,
vector<cv::Mat> yf);
ECO_FEATS shift_sample(ECO_FEATS &xf,
cv::Point2f shift,
std::vector<cv::Mat> kx,
std::vector<cv::Mat> ky);
#ifdef USE_MULTI_THREAD
static void *thread_train(void *params);
#endif
private:
bool is_color_image_;
EcoParameters params_;
cv::Point2f pos_; // final result
size_t frames_since_last_train_; // used for update;
// The max size of feature and its index, output_sz is T in (9) of C-COT paper
size_t output_size_, output_index_;
cv::Size2f base_target_size_; // target size without scale
cv::Size2i img_sample_size_; // base_target_sz * sarch_area_scale
cv::Size2i img_support_size_; // the corresponding size in the image
vector<cv::Size> feature_size_, filter_size_;
vector<int> feature_dim_, compressed_dim_;
ScaleFilter scale_filter_;
int nScales_; // number of scales;
float scale_step_;
vector<float> scale_factors_;
float currentScaleFactor_; // current img scale
// Compute the Fourier series indices
// kx_, ky_ is the k in (9) of C-COT paper, yf_ is the left part of (9);
vector<cv::Mat> ky_, kx_, yf_;
vector<cv::Mat> interp1_fs_, interp2_fs_;
vector<cv::Mat> cos_window_;
vector<cv::Mat> projection_matrix_;
vector<cv::Mat> reg_filter_;
vector<float> reg_energy_;
FeatureExtractor feature_extractor_;
SampleUpdate sample_update_;
ECO_FEATS sample_energy_;
EcoTrain eco_trainer_;
ECO_FEATS hf_full_;
#ifdef USE_MULTI_THREAD
bool thread_flag_train_;
public:
pthread_t thread_train_;
#endif
};
} // namespace eco
#endif
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化