代码拉取完成,页面将自动刷新
同步操作将从 PPOV_NUC/yolov8_openvino 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import numpy as np
import cv2
class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush']
# Create a list of colors for each class where each color is a tuple of 3 integer values
rng = np.random.default_rng(3)
colors = rng.uniform(0, 255, size=(len(class_names), 3))
def nms(boxes, scores, iou_threshold):
# Sort by score
sorted_indices = np.argsort(scores)[::-1]
keep_boxes = []
while sorted_indices.size > 0:
# Pick the last box
box_id = sorted_indices[0]
keep_boxes.append(box_id)
# Compute IoU of the picked box with the rest
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
# Remove boxes with IoU over the threshold
keep_indices = np.where(ious < iou_threshold)[0]
# print(keep_indices.shape, sorted_indices.shape)
sorted_indices = sorted_indices[keep_indices + 1]
return keep_boxes
def compute_iou(box, boxes):
# Compute xmin, ymin, xmax, ymax for both boxes
xmin = np.maximum(box[0], boxes[:, 0])
ymin = np.maximum(box[1], boxes[:, 1])
xmax = np.minimum(box[2], boxes[:, 2])
ymax = np.minimum(box[3], boxes[:, 3])
# Compute intersection area
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
# Compute union area
box_area = (box[2] - box[0]) * (box[3] - box[1])
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
union_area = box_area + boxes_area - intersection_area
# Compute IoU
iou = intersection_area / union_area
return iou
def xywh2xyxy(x):
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2
y[..., 1] = x[..., 1] - x[..., 3] / 2
y[..., 2] = x[..., 0] + x[..., 2] / 2
y[..., 3] = x[..., 1] + x[..., 3] / 2
return y
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3, mask_maps=None):
img_height, img_width = image.shape[:2]
size = min([img_height, img_width]) * 0.0006
text_thickness = int(min([img_height, img_width]) * 0.001)
mask_img = draw_masks(image, boxes, class_ids, mask_alpha, mask_maps)
# Draw bounding boxes and labels of detections
for box, score, class_id in zip(boxes, scores, class_ids):
color = colors[class_id]
x1, y1, x2, y2 = box.astype(int)
# Draw rectangle
cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, 2)
label = class_names[class_id]
caption = f'{label} {int(score * 100)}%'
(tw, th), _ = cv2.getTextSize(text=caption, fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=size, thickness=text_thickness)
th = int(th * 1.2)
cv2.rectangle(mask_img, (x1, y1),
(x1 + tw, y1 - th), color, -1)
cv2.putText(mask_img, caption, (x1, y1),
cv2.FONT_HERSHEY_SIMPLEX, size, (255, 255, 255), text_thickness, cv2.LINE_AA)
return mask_img
def draw_masks(image, boxes, class_ids, mask_alpha=0.3, mask_maps=None):
mask_img = image.copy()
# Draw bounding boxes and labels of detections
for i, (box, class_id) in enumerate(zip(boxes, class_ids)):
color = colors[class_id]
x1, y1, x2, y2 = box.astype(int)
# Draw fill mask image
if mask_maps is None:
cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)
else:
crop_mask = mask_maps[i][y1:y2, x1:x2, np.newaxis]
crop_mask_img = mask_img[y1:y2, x1:x2]
crop_mask_img = crop_mask_img * (1 - crop_mask) + crop_mask * color
mask_img[y1:y2, x1:x2] = crop_mask_img
return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)
def draw_comparison(img1, img2, name1, name2, fontsize=2.6, text_thickness=3):
(tw, th), _ = cv2.getTextSize(text=name1, fontFace=cv2.FONT_HERSHEY_DUPLEX,
fontScale=fontsize, thickness=text_thickness)
x1 = img1.shape[1] // 3
y1 = th
offset = th // 5
cv2.rectangle(img1, (x1 - offset * 2, y1 + offset),
(x1 + tw + offset * 2, y1 - th - offset), (0, 115, 255), -1)
cv2.putText(img1, name1,
(x1, y1),
cv2.FONT_HERSHEY_DUPLEX, fontsize,
(255, 255, 255), text_thickness)
(tw, th), _ = cv2.getTextSize(text=name2, fontFace=cv2.FONT_HERSHEY_DUPLEX,
fontScale=fontsize, thickness=text_thickness)
x1 = img2.shape[1] // 3
y1 = th
offset = th // 5
cv2.rectangle(img2, (x1 - offset * 2, y1 + offset),
(x1 + tw + offset * 2, y1 - th - offset), (94, 23, 235), -1)
cv2.putText(img2, name2,
(x1, y1),
cv2.FONT_HERSHEY_DUPLEX, fontsize,
(255, 255, 255), text_thickness)
combined_img = cv2.hconcat([img1, img2])
if combined_img.shape[1] > 3840:
combined_img = cv2.resize(combined_img, (3840, 2160))
return combined_img
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。