代码拉取完成,页面将自动刷新
同步操作将从 AI柠檬/ASRT_SpeechRecognition 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import platform as plat
import os
import numpy as np
from general_function.file_wav import *
from general_function.file_dict import *
import random
#import scipy.io.wavfile as wav
from scipy.fftpack import fft
class DataSpeech():
def __init__(self, path, type, LoadToMem = False, MemWavCount = 10000):
'''
初始化
参数:
path:数据存放位置根目录
'''
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
self.datapath = path; # 数据存放位置根目录
self.type = type # 数据类型,分为三种:训练集(train)、验证集(dev)、测试集(test)
self.slash = ''
if(system_type == 'Windows'):
self.slash='\\' # 反斜杠
elif(system_type == 'Linux'):
self.slash='/' # 正斜杠
else:
print('*[Message] Unknown System\n')
self.slash='/' # 正斜杠
if(self.slash != self.datapath[-1]): # 在目录路径末尾增加斜杠
self.datapath = self.datapath + self.slash
self.dic_wavlist_thchs30 = {}
self.dic_symbollist_thchs30 = {}
self.dic_wavlist_stcmds = {}
self.dic_symbollist_stcmds = {}
self.SymbolNum = 0 # 记录拼音符号数量
self.list_symbol = self.GetSymbolList() # 全部汉语拼音符号列表
self.list_wavnum=[] # wav文件标记列表
self.list_symbolnum=[] # symbol标记列表
self.DataNum = 0 # 记录数据量
self.LoadDataList()
self.wavs_data = []
self.LoadToMem = LoadToMem
self.MemWavCount = MemWavCount
pass
def LoadDataList(self):
'''
加载用于计算的数据列表
参数:
type:选取的数据集类型
train 训练集
dev 开发集
test 测试集
'''
# 设定选取哪一项作为要使用的数据集
if(self.type=='train'):
filename_wavlist_thchs30 = 'thchs30' + self.slash + 'train.wav.lst'
filename_wavlist_stcmds = 'st-cmds' + self.slash + 'train.wav.txt'
filename_symbollist_thchs30 = 'thchs30' + self.slash + 'train.syllable.txt'
filename_symbollist_stcmds = 'st-cmds' + self.slash + 'train.syllable.txt'
elif(self.type=='dev'):
filename_wavlist_thchs30 = 'thchs30' + self.slash + 'cv.wav.lst'
filename_wavlist_stcmds = 'st-cmds' + self.slash + 'dev.wav.txt'
filename_symbollist_thchs30 = 'thchs30' + self.slash + 'cv.syllable.txt'
filename_symbollist_stcmds = 'st-cmds' + self.slash + 'dev.syllable.txt'
elif(self.type=='test'):
filename_wavlist_thchs30 = 'thchs30' + self.slash + 'test.wav.lst'
filename_wavlist_stcmds = 'st-cmds' + self.slash + 'test.wav.txt'
filename_symbollist_thchs30 = 'thchs30' + self.slash + 'test.syllable.txt'
filename_symbollist_stcmds = 'st-cmds' + self.slash + 'test.syllable.txt'
else:
filename_wavlist = '' # 默认留空
filename_symbollist = ''
# 读取数据列表,wav文件列表和其对应的符号列表
self.dic_wavlist_thchs30,self.list_wavnum_thchs30 = get_wav_list(self.datapath + filename_wavlist_thchs30)
self.dic_wavlist_stcmds,self.list_wavnum_stcmds = get_wav_list(self.datapath + filename_wavlist_stcmds)
self.dic_symbollist_thchs30,self.list_symbolnum_thchs30 = get_wav_symbol(self.datapath + filename_symbollist_thchs30)
self.dic_symbollist_stcmds,self.list_symbolnum_stcmds = get_wav_symbol(self.datapath + filename_symbollist_stcmds)
self.DataNum = self.GetDataNum()
def GetDataNum(self):
'''
获取数据的数量
当wav数量和symbol数量一致的时候返回正确的值,否则返回-1,代表出错。
'''
num_wavlist_thchs30 = len(self.dic_wavlist_thchs30)
num_symbollist_thchs30 = len(self.dic_symbollist_thchs30)
num_wavlist_stcmds = len(self.dic_wavlist_stcmds)
num_symbollist_stcmds = len(self.dic_symbollist_stcmds)
if(num_wavlist_thchs30 == num_symbollist_thchs30 and num_wavlist_stcmds == num_symbollist_stcmds):
DataNum = num_wavlist_thchs30 + num_wavlist_stcmds
else:
DataNum = -1
return DataNum
def GetData(self,n_start,n_amount=1):
'''
读取数据,返回神经网络输入值和输出值矩阵(可直接用于神经网络训练的那种)
参数:
n_start:从编号为n_start数据开始选取数据
n_amount:选取的数据数量,默认为1,即一次一个wav文件
返回:
三个包含wav特征矩阵的神经网络输入值,和一个标定的类别矩阵神经网络输出值
'''
bili = 2
if(self.type=='train'):
bili = 11
# 读取一个文件
if(n_start % bili == 0):
filename = self.dic_wavlist_thchs30[self.list_wavnum_thchs30[n_start // bili]]
list_symbol=self.dic_symbollist_thchs30[self.list_symbolnum_thchs30[n_start // bili]]
else:
n = n_start // bili * (bili - 1)
yushu = n_start % bili
length=len(self.list_wavnum_stcmds)
filename = self.dic_wavlist_stcmds[self.list_wavnum_stcmds[(n + yushu - 1)%length]]
list_symbol=self.dic_symbollist_stcmds[self.list_symbolnum_stcmds[(n + yushu - 1)%length]]
if('Windows' == plat.system()):
filename = filename.replace('/','\\') # windows系统下需要执行这一行,对文件路径做特别处理
wavsignal,fs=read_wav_data(self.datapath + filename)
# 获取输出特征
feat_out=[]
#print("数据编号",n_start,filename)
for i in list_symbol:
if(''!=i):
n=self.SymbolToNum(i)
#v=self.NumToVector(n)
#feat_out.append(v)
feat_out.append(n)
#print('feat_out:',feat_out)
# 获取输入特征
data_input = GetFrequencyFeature3(wavsignal,fs)
#data_input = np.array(data_input)
data_input = data_input.reshape(data_input.shape[0],data_input.shape[1],1)
#arr_zero = np.zeros((1, 39), dtype=np.int16) #一个全是0的行向量
#while(len(data_input)<1600): #长度不够时补全到1600
# data_input = np.row_stack((data_input,arr_zero))
#data_input = data_input.T
data_label = np.array(feat_out)
return data_input, data_label
def data_genetator(self, batch_size=32, audio_length = 1600):
'''
数据生成器函数,用于Keras的generator_fit训练
batch_size: 一次产生的数据量
需要再修改。。。
'''
#labels = []
#for i in range(0,batch_size):
# #input_length.append([1500])
# labels.append([0.0])
#labels = np.array(labels, dtype = np.float)
labels = np.zeros((batch_size,1), dtype = np.float)
#print(input_length,len(input_length))
while True:
X = np.zeros((batch_size, audio_length, 200, 1), dtype = np.float)
#y = np.zeros((batch_size, 64, self.SymbolNum), dtype=np.int16)
y = np.zeros((batch_size, 64), dtype=np.int16)
#generator = ImageCaptcha(width=width, height=height)
input_length = []
label_length = []
for i in range(batch_size):
ran_num = random.randint(0,self.DataNum - 1) # 获取一个随机数
data_input, data_labels = self.GetData(ran_num) # 通过随机数取一个数据
#data_input, data_labels = self.GetData((ran_num + i) % self.DataNum) # 从随机数开始连续向后取一定数量数据
# 关于下面这一行取整除以8 并加8的余数,在实际中如果遇到报错,可尝试只在有余数时+1,没有余数时+0,或者干脆都不加,只留整除
input_length.append(data_input.shape[0] // 8 + data_input.shape[0] % 8)
#print(data_input, data_labels)
#print('data_input长度:',len(data_input))
X[i,0:len(data_input)] = data_input
#print('data_labels长度:',len(data_labels))
#print(data_labels)
y[i,0:len(data_labels)] = data_labels
#print(i,y[i].shape)
#y[i] = y[i].T
#print(i,y[i].shape)
label_length.append([len(data_labels)])
label_length = np.matrix(label_length)
input_length = np.array([input_length]).T
#input_length = np.array(input_length)
#print('input_length:\n',input_length)
#X=X.reshape(batch_size, audio_length, 200, 1)
#print(X)
yield [X, y, input_length, label_length ], labels
pass
def GetSymbolList(self):
'''
加载拼音符号列表,用于标记符号
返回一个列表list类型变量
'''
txt_obj=open('dict.txt','r',encoding='UTF-8') # 打开文件并读入
txt_text=txt_obj.read()
txt_lines=txt_text.split('\n') # 文本分割
list_symbol=[] # 初始化符号列表
for i in txt_lines:
if(i!=''):
txt_l=i.split('\t')
list_symbol.append(txt_l[0])
txt_obj.close()
list_symbol.append('_')
self.SymbolNum = len(list_symbol)
return list_symbol
def GetSymbolNum(self):
'''
获取拼音符号数量
'''
return len(self.list_symbol)
def SymbolToNum(self,symbol):
'''
符号转为数字
'''
if(symbol != ''):
return self.list_symbol.index(symbol)
return self.SymbolNum
def NumToVector(self,num):
'''
数字转为对应的向量
'''
v_tmp=[]
for i in range(0,len(self.list_symbol)):
if(i==num):
v_tmp.append(1)
else:
v_tmp.append(0)
v=np.array(v_tmp)
return v
if(__name__=='__main__'):
#path='E:\\语音数据集'
#l=DataSpeech(path)
#l.LoadDataList('train')
#print(l.GetDataNum())
#print(l.GetData(0))
#aa=l.data_genetator()
#for i in aa:
#a,b=i
#print(a,b)
pass
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。