代码拉取完成,页面将自动刷新
同步操作将从 openKylin/pillow 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""
Tests for resize functionality.
"""
from itertools import permutations
from PIL import Image
from .helper import PillowTestCase, hopper
class TestImagingCoreResize(PillowTestCase):
def resize(self, im, size, f):
# Image class independent version of resize.
im.load()
return im._new(im.im.resize(size, f))
def test_nearest_mode(self):
for mode in [
"1",
"P",
"L",
"I",
"F",
"RGB",
"RGBA",
"CMYK",
"YCbCr",
"I;16",
]: # exotic mode
im = hopper(mode)
r = self.resize(im, (15, 12), Image.NEAREST)
self.assertEqual(r.mode, mode)
self.assertEqual(r.size, (15, 12))
self.assertEqual(r.im.bands, im.im.bands)
def test_convolution_modes(self):
self.assertRaises(
ValueError, self.resize, hopper("1"), (15, 12), Image.BILINEAR
)
self.assertRaises(
ValueError, self.resize, hopper("P"), (15, 12), Image.BILINEAR
)
self.assertRaises(
ValueError, self.resize, hopper("I;16"), (15, 12), Image.BILINEAR
)
for mode in ["L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr"]:
im = hopper(mode)
r = self.resize(im, (15, 12), Image.BILINEAR)
self.assertEqual(r.mode, mode)
self.assertEqual(r.size, (15, 12))
self.assertEqual(r.im.bands, im.im.bands)
def test_reduce_filters(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
]:
r = self.resize(hopper("RGB"), (15, 12), f)
self.assertEqual(r.mode, "RGB")
self.assertEqual(r.size, (15, 12))
def test_enlarge_filters(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
]:
r = self.resize(hopper("RGB"), (212, 195), f)
self.assertEqual(r.mode, "RGB")
self.assertEqual(r.size, (212, 195))
def test_endianness(self):
# Make an image with one colored pixel, in one channel.
# When resized, that channel should be the same as a GS image.
# Other channels should be unaffected.
# The R and A channels should not swap, which is indicative of
# an endianness issues.
samples = {
"blank": Image.new("L", (2, 2), 0),
"filled": Image.new("L", (2, 2), 255),
"dirty": Image.new("L", (2, 2), 0),
}
samples["dirty"].putpixel((1, 1), 128)
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
]:
# samples resized with current filter
references = {
name: self.resize(ch, (4, 4), f) for name, ch in samples.items()
}
for mode, channels_set in [
("RGB", ("blank", "filled", "dirty")),
("RGBA", ("blank", "blank", "filled", "dirty")),
("LA", ("filled", "dirty")),
]:
for channels in set(permutations(channels_set)):
# compile image from different channels permutations
im = Image.merge(mode, [samples[ch] for ch in channels])
resized = self.resize(im, (4, 4), f)
for i, ch in enumerate(resized.split()):
# check what resized channel in image is the same
# as separately resized channel
self.assert_image_equal(ch, references[channels[i]])
def test_enlarge_zero(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
]:
r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), f)
self.assertEqual(r.mode, "RGB")
self.assertEqual(r.size, (212, 195))
self.assertEqual(r.getdata()[0], (0, 0, 0))
def test_unknown_filter(self):
self.assertRaises(ValueError, self.resize, hopper(), (10, 10), 9)
class TestReducingGapResize(PillowTestCase):
@classmethod
def setUpClass(cls):
cls.gradients_image = Image.open("Tests/images/radial_gradients.png")
cls.gradients_image.load()
def test_reducing_gap_values(self):
ref = self.gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=None)
im = self.gradients_image.resize((52, 34), Image.BICUBIC)
self.assert_image_equal(ref, im)
with self.assertRaises(ValueError):
self.gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0)
with self.assertRaises(ValueError):
self.gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0.99)
def test_reducing_gap_1(self):
for box, epsilon in [
(None, 4),
((1.1, 2.2, 510.8, 510.9), 4),
((3, 10, 410, 256), 10),
]:
ref = self.gradients_image.resize((52, 34), Image.BICUBIC, box=box)
im = self.gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=1.0
)
with self.assertRaises(AssertionError):
self.assert_image_equal(ref, im)
self.assert_image_similar(ref, im, epsilon)
def test_reducing_gap_2(self):
for box, epsilon in [
(None, 1.5),
((1.1, 2.2, 510.8, 510.9), 1.5),
((3, 10, 410, 256), 1),
]:
ref = self.gradients_image.resize((52, 34), Image.BICUBIC, box=box)
im = self.gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=2.0
)
with self.assertRaises(AssertionError):
self.assert_image_equal(ref, im)
self.assert_image_similar(ref, im, epsilon)
def test_reducing_gap_3(self):
for box, epsilon in [
(None, 1),
((1.1, 2.2, 510.8, 510.9), 1),
((3, 10, 410, 256), 0.5),
]:
ref = self.gradients_image.resize((52, 34), Image.BICUBIC, box=box)
im = self.gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=3.0
)
with self.assertRaises(AssertionError):
self.assert_image_equal(ref, im)
self.assert_image_similar(ref, im, epsilon)
def test_reducing_gap_8(self):
for box in [None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)]:
ref = self.gradients_image.resize((52, 34), Image.BICUBIC, box=box)
im = self.gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=8.0
)
self.assert_image_equal(ref, im)
def test_box_filter(self):
for box, epsilon in [
((0, 0, 512, 512), 5.5),
((0.9, 1.7, 128, 128), 9.5),
]:
ref = self.gradients_image.resize((52, 34), Image.BOX, box=box)
im = self.gradients_image.resize(
(52, 34), Image.BOX, box=box, reducing_gap=1.0
)
self.assert_image_similar(ref, im, epsilon)
class TestImageResize(PillowTestCase):
def test_resize(self):
def resize(mode, size):
out = hopper(mode).resize(size)
self.assertEqual(out.mode, mode)
self.assertEqual(out.size, size)
for mode in "1", "P", "L", "RGB", "I", "F":
resize(mode, (112, 103))
resize(mode, (188, 214))
# Test unknown resampling filter
with hopper() as im:
self.assertRaises(ValueError, im.resize, (10, 10), "unknown")
def test_default_filter(self):
for mode in "L", "RGB", "I", "F":
im = hopper(mode)
self.assertEqual(im.resize((20, 20), Image.BICUBIC), im.resize((20, 20)))
for mode in "1", "P":
im = hopper(mode)
self.assertEqual(im.resize((20, 20), Image.NEAREST), im.resize((20, 20)))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。