加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
dijkstra最短路(堆优化).cpp 1.55 KB
一键复制 编辑 原始数据 按行查看 历史
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e6+10;
// 稀疏图用邻接表来存
int h[N], e[N], ne[N], idx;
int w[N];
int dist[N];
bool st[N]; //如果为true说明这个点的最短路径已经确定
int n, m;
void add(int x, int y, int c)
{
w[idx] = c; // 有重边也不要紧,假设1->2有权重为2和3的边,再遍历到点1的时候2号点的距离会更新两次放入堆中
e[idx] = y; // 这样堆中会有很多冗余的点,但是在弹出的时候还是会弹出最小值2+x(x为之前确定的最短路径),并
ne[idx] = h[x]; // 标记st为true,所以下一次弹出3+x会continue不会向下执行。
h[x] = idx++;
}
int dijkstra()
{
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
priority_queue<PII,vector<PII>,greater<PII>> heap;
heap.push({0,1});
while(heap.size())
{
PII k=heap.top();
heap.pop();
int ver=k.second,distance=k.first;
if(st[ver]) continue;
st[ver]=true;
for(int i=h[ver];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>distance+w[i])
{
dist[j]=distance+w[i];
heap.push({dist[j],j});
}
}
}
if(dist[n] == 0x3f3f3f3f) return -1;
else return dist[n];
}
int main()
{
memset(h, -1, sizeof(h));
scanf("%d%d", &n, &m);
while (m--)
{
int x, y, c;
scanf("%d%d%d", &x, &y, &c);
add(x, y, c);
}
cout << dijkstra() << endl;
return 0;
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化