代码拉取完成,页面将自动刷新
from models import *
from tensorboardX import SummaryWriter
import os
import sys
import torch
import shutil
import logging
class Trainer:
def __init__(self, data_loaders, dataset, parameter):
self.parameter = parameter
# data loader
self.train_data_loader = data_loaders[0]
self.dev_data_loader = data_loaders[1]
self.test_data_loader = data_loaders[2]
# parameters
self.few = parameter['few']
self.num_query = parameter['num_query']
self.batch_size = parameter['batch_size']
self.learning_rate = parameter['learning_rate']
self.early_stopping_patience = parameter['early_stopping_patience']
# epoch
self.epoch = parameter['epoch']
self.print_epoch = parameter['print_epoch']
self.eval_epoch = parameter['eval_epoch']
self.checkpoint_epoch = parameter['checkpoint_epoch']
# device
self.device = parameter['device']
self.metaR = MetaR(dataset, parameter)
self.metaR.to(self.device)
# optimizer
self.optimizer = torch.optim.Adam(self.metaR.parameters(), self.learning_rate)
# tensorboard log writer
if parameter['step'] == 'train':
self.writer = SummaryWriter(os.path.join(parameter['log_dir'], parameter['prefix']))
# dir
self.state_dir = os.path.join(self.parameter['state_dir'], self.parameter['prefix'])
if not os.path.isdir(self.state_dir):
os.makedirs(self.state_dir)
self.ckpt_dir = os.path.join(self.parameter['state_dir'], self.parameter['prefix'], 'checkpoint')
if not os.path.isdir(self.ckpt_dir):
os.makedirs(self.ckpt_dir)
self.state_dict_file = ''
# logging
logging_dir = os.path.join(self.parameter['log_dir'], self.parameter['prefix'], 'res.log')
logging.basicConfig(filename=logging_dir, level=logging.INFO, format="%(asctime)s - %(message)s")
# load state_dict and params
if parameter['step'] in ['test', 'dev']:
self.reload()
def reload(self):
if self.parameter['eval_ckpt'] is not None:
state_dict_file = os.path.join(self.ckpt_dir, 'state_dict_' + self.parameter['eval_ckpt'] + '.ckpt')
else:
state_dict_file = os.path.join(self.state_dir, 'state_dict')
self.state_dict_file = state_dict_file
logging.info('Reload state_dict from {}'.format(state_dict_file))
print('reload state_dict from {}'.format(state_dict_file))
state = torch.load(state_dict_file, map_location=self.device)
if os.path.isfile(state_dict_file):
self.metaR.load_state_dict(state)
else:
raise RuntimeError('No state dict in {}!'.format(state_dict_file))
def save_checkpoint(self, epoch):
torch.save(self.metaR.state_dict(), os.path.join(self.ckpt_dir, 'state_dict_' + str(epoch) + '.ckpt'))
def del_checkpoint(self, epoch):
path = os.path.join(self.ckpt_dir, 'state_dict_' + str(epoch) + '.ckpt')
if os.path.exists(path):
os.remove(path)
else:
raise RuntimeError('No such checkpoint to delete: {}'.format(path))
def save_best_state_dict(self, best_epoch):
shutil.copy(os.path.join(self.ckpt_dir, 'state_dict_' + str(best_epoch) + '.ckpt'),
os.path.join(self.state_dir, 'state_dict'))
def write_training_log(self, data, epoch):
self.writer.add_scalar('Training_Loss', data['Loss'], epoch)
def write_validating_log(self, data, epoch):
self.writer.add_scalar('Validating_MRR', data['MRR'], epoch)
self.writer.add_scalar('Validating_Hits_10', data['Hits@10'], epoch)
self.writer.add_scalar('Validating_Hits_5', data['Hits@5'], epoch)
self.writer.add_scalar('Validating_Hits_1', data['Hits@1'], epoch)
def logging_training_data(self, data, epoch):
logging.info("Epoch: {}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
epoch, data['MRR'], data['Hits@10'], data['Hits@5'], data['Hits@1']))
def logging_eval_data(self, data, state_path, istest=False):
setname = 'dev set'
if istest:
setname = 'test set'
logging.info("Eval {} on {}".format(state_path, setname))
logging.info("MRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
data['MRR'], data['Hits@10'], data['Hits@5'], data['Hits@1']))
def rank_predict(self, data, x, ranks):
# query_idx is the idx of positive score
query_idx = x.shape[0] - 1
# sort all scores with descending, because more plausible triple has higher score
_, idx = torch.sort(x, descending=True)
rank = list(idx.cpu().numpy()).index(query_idx) + 1
ranks.append(rank)
# update data
if rank <= 10:
data['Hits@10'] += 1
if rank <= 5:
data['Hits@5'] += 1
if rank == 1:
data['Hits@1'] += 1
data['MRR'] += 1.0 / rank
def do_one_step(self, task, iseval=False, curr_rel=''):
loss, p_score, n_score = 0, 0, 0
if not iseval:
self.optimizer.zero_grad()
p_score, n_score = self.metaR(task, iseval, curr_rel)
y = torch.Tensor([1]).to(self.device)
batch_size = p_score.size(0)
y = y[None,:].repeat(batch_size, 1)
loss = self.metaR.loss_func(p_score, n_score, y)
loss.backward()
self.optimizer.step()
elif curr_rel != '':
p_score, n_score = self.metaR(task, iseval, curr_rel)
y = torch.Tensor([1]).to(self.device)
batch_size = p_score.size(0)
y = y[None,:].repeat(batch_size, 1)
loss = self.metaR.loss_func(p_score, n_score, y)
return loss, p_score, n_score
def train(self):
# initialization
best_epoch = 0
best_value = 0
bad_counts = 0
# training by epoch
for e in range(self.epoch):
# sample one batch from data_loader
train_task, curr_rel = self.train_data_loader.next_batch()
loss, _, _ = self.do_one_step(train_task, iseval=False, curr_rel=curr_rel)
# print the loss on specific epoch
if e % self.print_epoch == 0:
loss_num = loss.item()
self.write_training_log({'Loss': loss_num}, e)
print("Epoch: {}\tLoss: {:.4f}".format(e, loss_num))
# save checkpoint on specific epoch
if e % self.checkpoint_epoch == 0 and e != 0:
print('Epoch {} has finished, saving...'.format(e))
self.save_checkpoint(e)
# do evaluation on specific epoch
if e % self.eval_epoch == 0 and e != 0:
print('Epoch {} has finished, validating...'.format(e))
valid_data = self.eval(istest=False, epoch=e)
self.write_validating_log(valid_data, e)
metric = self.parameter['metric']
# early stopping checking
if valid_data[metric] > best_value:
best_value = valid_data[metric]
best_epoch = e
print('\tBest model | {0} of valid set is {1:.3f}'.format(metric, best_value))
bad_counts = 0
# save current best
self.save_checkpoint(best_epoch)
else:
print('\tBest {0} of valid set is {1:.3f} at {2} | bad count is {3}'.format(
metric, best_value, best_epoch, bad_counts))
bad_counts += 1
if bad_counts >= self.early_stopping_patience:
print('\tEarly stopping at epoch %d' % e)
break
print('Training has finished')
print('\tBest epoch is {0} | {1} of valid set is {2:.3f}'.format(best_epoch, metric, best_value))
self.save_best_state_dict(best_epoch)
print('Finish')
def eval(self, istest=False, epoch=None):
self.metaR.eval()
# clear sharing rel_q
self.metaR.rel_q_sharing = dict()
if istest:
data_loader = self.test_data_loader
else:
data_loader = self.dev_data_loader
data_loader.curr_tri_idx = 0
# initial return data of validation
data = {'MRR': 0, 'Hits@1': 0, 'Hits@5': 0, 'Hits@10': 0}
ranks = []
t = 0
temp = dict()
while True:
# sample all the eval tasks
eval_task, curr_rel = data_loader.next_one_on_eval()
# at the end of sample tasks, a symbol 'EOT' will return
if eval_task == 'EOT':
break
t += 1
_, p_score, n_score = self.do_one_step(eval_task, iseval=True, curr_rel=curr_rel)
x = torch.cat([n_score, p_score], 1).squeeze()
self.rank_predict(data, x, ranks)
# print current temp data dynamically
for k in data.keys():
temp[k] = data[k] / t
sys.stdout.write("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, temp['MRR'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
sys.stdout.flush()
# print overall evaluation result and return it
for k in data.keys():
data[k] = round(data[k] / t, 3)
if self.parameter['step'] == 'train':
self.logging_training_data(data, epoch)
else:
self.logging_eval_data(data, self.state_dict_file, istest)
print("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, data['MRR'], data['Hits@10'], data['Hits@5'], data['Hits@1']))
return data
def eval_by_relation(self, istest=False, epoch=None):
self.metaR.eval()
self.metaR.rel_q_sharing = dict()
if istest:
data_loader = self.test_data_loader
else:
data_loader = self.dev_data_loader
data_loader.curr_tri_idx = 0
all_data = {'MRR': 0, 'Hits@1': 0, 'Hits@5': 0, 'Hits@10': 0}
all_t = 0
all_ranks = []
for rel in data_loader.all_rels:
print("rel: {}, num_cands: {}, num_tasks:{}".format(
rel, len(data_loader.rel2candidates[rel]), len(data_loader.tasks[rel][self.few:])))
data = {'MRR': 0, 'Hits@1': 0, 'Hits@5': 0, 'Hits@10': 0}
temp = dict()
t = 0
ranks = []
while True:
eval_task, curr_rel = data_loader.next_one_on_eval_by_relation(rel)
if eval_task == 'EOT':
break
t += 1
_, p_score, n_score = self.do_one_step(eval_task, iseval=True, curr_rel=rel)
x = torch.cat([n_score, p_score], 1).squeeze()
self.rank_predict(data, x, ranks)
for k in data.keys():
temp[k] = data[k] / t
sys.stdout.write("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, temp['MRR'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
sys.stdout.flush()
print("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, temp['MRR'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
for k in data.keys():
all_data[k] += data[k]
all_t += t
all_ranks.extend(ranks)
print('Overall')
for k in all_data.keys():
all_data[k] = round(all_data[k] / all_t, 3)
print("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
all_t, all_data['MRR'], all_data['Hits@10'], all_data['Hits@5'], all_data['Hits@1']))
return all_data
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。