加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
memory.c 101.39 KB
一键复制 编辑 原始数据 按行查看 历史
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254
/*
* Physical memory management
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qom/object.h"
#include "trace-root.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
#include "hw/misc/mmio_interface.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
//#define DEBUG_UNASSIGNED
static unsigned memory_region_transaction_depth;
static bool memory_region_update_pending;
static bool ioeventfd_update_pending;
static bool global_dirty_log = false;
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
= QTAILQ_HEAD_INITIALIZER(memory_listeners);
static QTAILQ_HEAD(, AddressSpace) address_spaces
= QTAILQ_HEAD_INITIALIZER(address_spaces);
static GHashTable *flat_views;
typedef struct AddrRange AddrRange;
/*
* Note that signed integers are needed for negative offsetting in aliases
* (large MemoryRegion::alias_offset).
*/
struct AddrRange {
Int128 start;
Int128 size;
};
static AddrRange addrrange_make(Int128 start, Int128 size)
{
return (AddrRange) { start, size };
}
static bool addrrange_equal(AddrRange r1, AddrRange r2)
{
return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
}
static Int128 addrrange_end(AddrRange r)
{
return int128_add(r.start, r.size);
}
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
{
int128_addto(&range.start, delta);
return range;
}
static bool addrrange_contains(AddrRange range, Int128 addr)
{
return int128_ge(addr, range.start)
&& int128_lt(addr, addrrange_end(range));
}
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
{
return addrrange_contains(r1, r2.start)
|| addrrange_contains(r2, r1.start);
}
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
{
Int128 start = int128_max(r1.start, r2.start);
Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
return addrrange_make(start, int128_sub(end, start));
}
enum ListenerDirection { Forward, Reverse };
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
do { \
MemoryListener *_listener; \
struct memory_listeners_as *list = &(_as)->listeners; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, list, link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
/* No need to ref/unref .mr, the FlatRange keeps it alive. */
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
do { \
MemoryRegionSection mrs = section_from_flat_range(fr, \
address_space_to_flatview(as)); \
MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
} while(0)
struct CoalescedMemoryRange {
AddrRange addr;
QTAILQ_ENTRY(CoalescedMemoryRange) link;
};
struct MemoryRegionIoeventfd {
AddrRange addr;
bool match_data;
uint64_t data;
EventNotifier *e;
};
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
MemoryRegionIoeventfd *b)
{
if (int128_lt(a->addr.start, b->addr.start)) {
return true;
} else if (int128_gt(a->addr.start, b->addr.start)) {
return false;
} else if (int128_lt(a->addr.size, b->addr.size)) {
return true;
} else if (int128_gt(a->addr.size, b->addr.size)) {
return false;
} else if (a->match_data < b->match_data) {
return true;
} else if (a->match_data > b->match_data) {
return false;
} else if (a->match_data) {
if (a->data < b->data) {
return true;
} else if (a->data > b->data) {
return false;
}
}
if (a->e < b->e) {
return true;
} else if (a->e > b->e) {
return false;
}
return false;
}
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
MemoryRegionIoeventfd *b)
{
return !memory_region_ioeventfd_before(a, b)
&& !memory_region_ioeventfd_before(b, a);
}
/* Range of memory in the global map. Addresses are absolute. */
struct FlatRange {
MemoryRegion *mr;
hwaddr offset_in_region;
AddrRange addr;
uint8_t dirty_log_mask;
bool romd_mode;
bool readonly;
};
#define FOR_EACH_FLAT_RANGE(var, view) \
for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
static inline MemoryRegionSection
section_from_flat_range(FlatRange *fr, FlatView *fv)
{
return (MemoryRegionSection) {
.mr = fr->mr,
.fv = fv,
.offset_within_region = fr->offset_in_region,
.size = fr->addr.size,
.offset_within_address_space = int128_get64(fr->addr.start),
.readonly = fr->readonly,
};
}
static bool flatrange_equal(FlatRange *a, FlatRange *b)
{
return a->mr == b->mr
&& addrrange_equal(a->addr, b->addr)
&& a->offset_in_region == b->offset_in_region
&& a->romd_mode == b->romd_mode
&& a->readonly == b->readonly;
}
static FlatView *flatview_new(MemoryRegion *mr_root)
{
FlatView *view;
view = g_new0(FlatView, 1);
view->ref = 1;
view->root = mr_root;
memory_region_ref(mr_root);
trace_flatview_new(view, mr_root);
return view;
}
/* Insert a range into a given position. Caller is responsible for maintaining
* sorting order.
*/
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
{
if (view->nr == view->nr_allocated) {
view->nr_allocated = MAX(2 * view->nr, 10);
view->ranges = g_realloc(view->ranges,
view->nr_allocated * sizeof(*view->ranges));
}
memmove(view->ranges + pos + 1, view->ranges + pos,
(view->nr - pos) * sizeof(FlatRange));
view->ranges[pos] = *range;
memory_region_ref(range->mr);
++view->nr;
}
static void flatview_destroy(FlatView *view)
{
int i;
trace_flatview_destroy(view, view->root);
if (view->dispatch) {
address_space_dispatch_free(view->dispatch);
}
for (i = 0; i < view->nr; i++) {
memory_region_unref(view->ranges[i].mr);
}
g_free(view->ranges);
memory_region_unref(view->root);
g_free(view);
}
static bool flatview_ref(FlatView *view)
{
return atomic_fetch_inc_nonzero(&view->ref) > 0;
}
void flatview_unref(FlatView *view)
{
if (atomic_fetch_dec(&view->ref) == 1) {
trace_flatview_destroy_rcu(view, view->root);
assert(view->root);
call_rcu(view, flatview_destroy, rcu);
}
}
static bool can_merge(FlatRange *r1, FlatRange *r2)
{
return int128_eq(addrrange_end(r1->addr), r2->addr.start)
&& r1->mr == r2->mr
&& int128_eq(int128_add(int128_make64(r1->offset_in_region),
r1->addr.size),
int128_make64(r2->offset_in_region))
&& r1->dirty_log_mask == r2->dirty_log_mask
&& r1->romd_mode == r2->romd_mode
&& r1->readonly == r2->readonly;
}
/* Attempt to simplify a view by merging adjacent ranges */
static void flatview_simplify(FlatView *view)
{
unsigned i, j;
i = 0;
while (i < view->nr) {
j = i + 1;
while (j < view->nr
&& can_merge(&view->ranges[j-1], &view->ranges[j])) {
int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
++j;
}
++i;
memmove(&view->ranges[i], &view->ranges[j],
(view->nr - j) * sizeof(view->ranges[j]));
view->nr -= j - i;
}
}
static bool memory_region_big_endian(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static bool memory_region_wrong_endianness(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
{
if (memory_region_wrong_endianness(mr)) {
switch (size) {
case 1:
break;
case 2:
*data = bswap16(*data);
break;
case 4:
*data = bswap32(*data);
break;
case 8:
*data = bswap64(*data);
break;
default:
abort();
}
}
}
static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
{
MemoryRegion *root;
hwaddr abs_addr = offset;
abs_addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
abs_addr += root->addr;
}
return abs_addr;
}
static int get_cpu_index(void)
{
if (current_cpu) {
return current_cpu->cpu_index;
}
return -1;
}
static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->read(mr->opaque, addr, size);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = 0;
MemTxResult r;
r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return r;
}
static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
return MEMTX_OK;
}
static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
mr->ops->write(mr->opaque, addr, tmp, size);
return MEMTX_OK;
}
static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
}
static MemTxResult access_with_adjusted_size(hwaddr addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
MemTxResult (*access_fn)
(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs),
MemoryRegion *mr,
MemTxAttrs attrs)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
MemTxResult r = MEMTX_OK;
if (!access_size_min) {
access_size_min = 1;
}
if (!access_size_max) {
access_size_max = 4;
}
/* FIXME: support unaligned access? */
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = -1ULL >> (64 - access_size * 8);
if (memory_region_big_endian(mr)) {
for (i = 0; i < size; i += access_size) {
r |= access_fn(mr, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask, attrs);
}
} else {
for (i = 0; i < size; i += access_size) {
r |= access_fn(mr, addr + i, value, access_size, i * 8,
access_mask, attrs);
}
}
return r;
}
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
{
AddressSpace *as;
while (mr->container) {
mr = mr->container;
}
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
if (mr == as->root) {
return as;
}
}
return NULL;
}
/* Render a memory region into the global view. Ranges in @view obscure
* ranges in @mr.
*/
static void render_memory_region(FlatView *view,
MemoryRegion *mr,
Int128 base,
AddrRange clip,
bool readonly)
{
MemoryRegion *subregion;
unsigned i;
hwaddr offset_in_region;
Int128 remain;
Int128 now;
FlatRange fr;
AddrRange tmp;
if (!mr->enabled) {
return;
}
int128_addto(&base, int128_make64(mr->addr));
readonly |= mr->readonly;
tmp = addrrange_make(base, mr->size);
if (!addrrange_intersects(tmp, clip)) {
return;
}
clip = addrrange_intersection(tmp, clip);
if (mr->alias) {
int128_subfrom(&base, int128_make64(mr->alias->addr));
int128_subfrom(&base, int128_make64(mr->alias_offset));
render_memory_region(view, mr->alias, base, clip, readonly);
return;
}
/* Render subregions in priority order. */
QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
render_memory_region(view, subregion, base, clip, readonly);
}
if (!mr->terminates) {
return;
}
offset_in_region = int128_get64(int128_sub(clip.start, base));
base = clip.start;
remain = clip.size;
fr.mr = mr;
fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
fr.romd_mode = mr->romd_mode;
fr.readonly = readonly;
/* Render the region itself into any gaps left by the current view. */
for (i = 0; i < view->nr && int128_nz(remain); ++i) {
if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
continue;
}
if (int128_lt(base, view->ranges[i].addr.start)) {
now = int128_min(remain,
int128_sub(view->ranges[i].addr.start, base));
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, now);
flatview_insert(view, i, &fr);
++i;
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
now = int128_sub(int128_min(int128_add(base, remain),
addrrange_end(view->ranges[i].addr)),
base);
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
if (int128_nz(remain)) {
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, remain);
flatview_insert(view, i, &fr);
}
}
static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
{
while (mr->enabled) {
if (mr->alias) {
if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
/* The alias is included in its entirety. Use it as
* the "real" root, so that we can share more FlatViews.
*/
mr = mr->alias;
continue;
}
} else if (!mr->terminates) {
unsigned int found = 0;
MemoryRegion *child, *next = NULL;
QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
if (child->enabled) {
if (++found > 1) {
next = NULL;
break;
}
if (!child->addr && int128_ge(mr->size, child->size)) {
/* A child is included in its entirety. If it's the only
* enabled one, use it in the hope of finding an alias down the
* way. This will also let us share FlatViews.
*/
next = child;
}
}
}
if (found == 0) {
return NULL;
}
if (next) {
mr = next;
continue;
}
}
return mr;
}
return NULL;
}
/* Render a memory topology into a list of disjoint absolute ranges. */
static FlatView *generate_memory_topology(MemoryRegion *mr)
{
int i;
FlatView *view;
view = flatview_new(mr);
if (mr) {
render_memory_region(view, mr, int128_zero(),
addrrange_make(int128_zero(), int128_2_64()), false);
}
flatview_simplify(view);
view->dispatch = address_space_dispatch_new(view);
for (i = 0; i < view->nr; i++) {
MemoryRegionSection mrs =
section_from_flat_range(&view->ranges[i], view);
flatview_add_to_dispatch(view, &mrs);
}
address_space_dispatch_compact(view->dispatch);
g_hash_table_replace(flat_views, mr, view);
return view;
}
static void address_space_add_del_ioeventfds(AddressSpace *as,
MemoryRegionIoeventfd *fds_new,
unsigned fds_new_nb,
MemoryRegionIoeventfd *fds_old,
unsigned fds_old_nb)
{
unsigned iold, inew;
MemoryRegionIoeventfd *fd;
MemoryRegionSection section;
/* Generate a symmetric difference of the old and new fd sets, adding
* and deleting as necessary.
*/
iold = inew = 0;
while (iold < fds_old_nb || inew < fds_new_nb) {
if (iold < fds_old_nb
&& (inew == fds_new_nb
|| memory_region_ioeventfd_before(&fds_old[iold],
&fds_new[inew]))) {
fd = &fds_old[iold];
section = (MemoryRegionSection) {
.fv = address_space_to_flatview(as),
.offset_within_address_space = int128_get64(fd->addr.start),
.size = fd->addr.size,
};
MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
fd->match_data, fd->data, fd->e);
++iold;
} else if (inew < fds_new_nb
&& (iold == fds_old_nb
|| memory_region_ioeventfd_before(&fds_new[inew],
&fds_old[iold]))) {
fd = &fds_new[inew];
section = (MemoryRegionSection) {
.fv = address_space_to_flatview(as),
.offset_within_address_space = int128_get64(fd->addr.start),
.size = fd->addr.size,
};
MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
fd->match_data, fd->data, fd->e);
++inew;
} else {
++iold;
++inew;
}
}
}
FlatView *address_space_get_flatview(AddressSpace *as)
{
FlatView *view;
rcu_read_lock();
do {
view = address_space_to_flatview(as);
/* If somebody has replaced as->current_map concurrently,
* flatview_ref returns false.
*/
} while (!flatview_ref(view));
rcu_read_unlock();
return view;
}
static void address_space_update_ioeventfds(AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
unsigned ioeventfd_nb = 0;
MemoryRegionIoeventfd *ioeventfds = NULL;
AddrRange tmp;
unsigned i;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (addrrange_intersects(fr->addr, tmp)) {
++ioeventfd_nb;
ioeventfds = g_realloc(ioeventfds,
ioeventfd_nb * sizeof(*ioeventfds));
ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
ioeventfds[ioeventfd_nb-1].addr = tmp;
}
}
}
address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
as->ioeventfds, as->ioeventfd_nb);
g_free(as->ioeventfds);
as->ioeventfds = ioeventfds;
as->ioeventfd_nb = ioeventfd_nb;
flatview_unref(view);
}
static void address_space_update_topology_pass(AddressSpace *as,
const FlatView *old_view,
const FlatView *new_view,
bool adding)
{
unsigned iold, inew;
FlatRange *frold, *frnew;
/* Generate a symmetric difference of the old and new memory maps.
* Kill ranges in the old map, and instantiate ranges in the new map.
*/
iold = inew = 0;
while (iold < old_view->nr || inew < new_view->nr) {
if (iold < old_view->nr) {
frold = &old_view->ranges[iold];
} else {
frold = NULL;
}
if (inew < new_view->nr) {
frnew = &new_view->ranges[inew];
} else {
frnew = NULL;
}
if (frold
&& (!frnew
|| int128_lt(frold->addr.start, frnew->addr.start)
|| (int128_eq(frold->addr.start, frnew->addr.start)
&& !flatrange_equal(frold, frnew)))) {
/* In old but not in new, or in both but attributes changed. */
if (!adding) {
MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
}
++iold;
} else if (frold && frnew && flatrange_equal(frold, frnew)) {
/* In both and unchanged (except logging may have changed) */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
}
++iold;
++inew;
} else {
/* In new */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
}
++inew;
}
}
}
static void flatviews_init(void)
{
static FlatView *empty_view;
if (flat_views) {
return;
}
flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
(GDestroyNotify) flatview_unref);
if (!empty_view) {
empty_view = generate_memory_topology(NULL);
/* We keep it alive forever in the global variable. */
flatview_ref(empty_view);
} else {
g_hash_table_replace(flat_views, NULL, empty_view);
flatview_ref(empty_view);
}
}
static void flatviews_reset(void)
{
AddressSpace *as;
if (flat_views) {
g_hash_table_unref(flat_views);
flat_views = NULL;
}
flatviews_init();
/* Render unique FVs */
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
if (g_hash_table_lookup(flat_views, physmr)) {
continue;
}
generate_memory_topology(physmr);
}
}
static void address_space_set_flatview(AddressSpace *as)
{
FlatView *old_view = address_space_to_flatview(as);
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
assert(new_view);
if (old_view == new_view) {
return;
}
if (old_view) {
flatview_ref(old_view);
}
flatview_ref(new_view);
if (!QTAILQ_EMPTY(&as->listeners)) {
FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
if (!old_view2) {
old_view2 = &tmpview;
}
address_space_update_topology_pass(as, old_view2, new_view, false);
address_space_update_topology_pass(as, old_view2, new_view, true);
}
/* Writes are protected by the BQL. */
atomic_rcu_set(&as->current_map, new_view);
if (old_view) {
flatview_unref(old_view);
}
/* Note that all the old MemoryRegions are still alive up to this
* point. This relieves most MemoryListeners from the need to
* ref/unref the MemoryRegions they get---unless they use them
* outside the iothread mutex, in which case precise reference
* counting is necessary.
*/
if (old_view) {
flatview_unref(old_view);
}
}
static void address_space_update_topology(AddressSpace *as)
{
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
flatviews_init();
if (!g_hash_table_lookup(flat_views, physmr)) {
generate_memory_topology(physmr);
}
address_space_set_flatview(as);
}
void memory_region_transaction_begin(void)
{
qemu_flush_coalesced_mmio_buffer();
++memory_region_transaction_depth;
}
void memory_region_transaction_commit(void)
{
AddressSpace *as;
assert(memory_region_transaction_depth);
assert(qemu_mutex_iothread_locked());
--memory_region_transaction_depth;
if (!memory_region_transaction_depth) {
if (memory_region_update_pending) {
flatviews_reset();
MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
address_space_set_flatview(as);
address_space_update_ioeventfds(as);
}
memory_region_update_pending = false;
ioeventfd_update_pending = false;
MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
} else if (ioeventfd_update_pending) {
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
address_space_update_ioeventfds(as);
}
ioeventfd_update_pending = false;
}
}
}
static void memory_region_destructor_none(MemoryRegion *mr)
{
}
static void memory_region_destructor_ram(MemoryRegion *mr)
{
qemu_ram_free(mr->ram_block);
}
static bool memory_region_need_escape(char c)
{
return c == '/' || c == '[' || c == '\\' || c == ']';
}
static char *memory_region_escape_name(const char *name)
{
const char *p;
char *escaped, *q;
uint8_t c;
size_t bytes = 0;
for (p = name; *p; p++) {
bytes += memory_region_need_escape(*p) ? 4 : 1;
}
if (bytes == p - name) {
return g_memdup(name, bytes + 1);
}
escaped = g_malloc(bytes + 1);
for (p = name, q = escaped; *p; p++) {
c = *p;
if (unlikely(memory_region_need_escape(c))) {
*q++ = '\\';
*q++ = 'x';
*q++ = "0123456789abcdef"[c >> 4];
c = "0123456789abcdef"[c & 15];
}
*q++ = c;
}
*q = 0;
return escaped;
}
static void memory_region_do_init(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
mr->size = int128_2_64();
}
mr->name = g_strdup(name);
mr->owner = owner;
mr->ram_block = NULL;
if (name) {
char *escaped_name = memory_region_escape_name(name);
char *name_array = g_strdup_printf("%s[*]", escaped_name);
if (!owner) {
owner = container_get(qdev_get_machine(), "/unattached");
}
object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
object_unref(OBJECT(mr));
g_free(name_array);
g_free(escaped_name);
}
}
void memory_region_init(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
memory_region_do_init(mr, owner, name, size);
}
static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
uint64_t value = mr->addr;
visit_type_uint64(v, name, &value, errp);
}
static void memory_region_get_container(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
gchar *path = (gchar *)"";
if (mr->container) {
path = object_get_canonical_path(OBJECT(mr->container));
}
visit_type_str(v, name, &path, errp);
if (mr->container) {
g_free(path);
}
}
static Object *memory_region_resolve_container(Object *obj, void *opaque,
const char *part)
{
MemoryRegion *mr = MEMORY_REGION(obj);
return OBJECT(mr->container);
}
static void memory_region_get_priority(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
int32_t value = mr->priority;
visit_type_int32(v, name, &value, errp);
}
static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
uint64_t value = memory_region_size(mr);
visit_type_uint64(v, name, &value, errp);
}
static void memory_region_initfn(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
ObjectProperty *op;
mr->ops = &unassigned_mem_ops;
mr->enabled = true;
mr->romd_mode = true;
mr->global_locking = true;
mr->destructor = memory_region_destructor_none;
QTAILQ_INIT(&mr->subregions);
QTAILQ_INIT(&mr->coalesced);
op = object_property_add(OBJECT(mr), "container",
"link<" TYPE_MEMORY_REGION ">",
memory_region_get_container,
NULL, /* memory_region_set_container */
NULL, NULL, &error_abort);
op->resolve = memory_region_resolve_container;
object_property_add(OBJECT(mr), "addr", "uint64",
memory_region_get_addr,
NULL, /* memory_region_set_addr */
NULL, NULL, &error_abort);
object_property_add(OBJECT(mr), "priority", "uint32",
memory_region_get_priority,
NULL, /* memory_region_set_priority */
NULL, NULL, &error_abort);
object_property_add(OBJECT(mr), "size", "uint64",
memory_region_get_size,
NULL, /* memory_region_set_size, */
NULL, NULL, &error_abort);
}
static void iommu_memory_region_initfn(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
mr->is_iommu = true;
}
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
if (current_cpu != NULL) {
cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
}
return 0;
}
static void unassigned_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
#endif
if (current_cpu != NULL) {
cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
}
}
static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return false;
}
const MemoryRegionOps unassigned_mem_ops = {
.valid.accepts = unassigned_mem_accepts,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static uint64_t memory_region_ram_device_read(void *opaque,
hwaddr addr, unsigned size)
{
MemoryRegion *mr = opaque;
uint64_t data = (uint64_t)~0;
switch (size) {
case 1:
data = *(uint8_t *)(mr->ram_block->host + addr);
break;
case 2:
data = *(uint16_t *)(mr->ram_block->host + addr);
break;
case 4:
data = *(uint32_t *)(mr->ram_block->host + addr);
break;
case 8:
data = *(uint64_t *)(mr->ram_block->host + addr);
break;
}
trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
return data;
}
static void memory_region_ram_device_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
MemoryRegion *mr = opaque;
trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
switch (size) {
case 1:
*(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
break;
case 2:
*(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
break;
case 4:
*(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
break;
case 8:
*(uint64_t *)(mr->ram_block->host + addr) = data;
break;
}
}
static const MemoryRegionOps ram_device_mem_ops = {
.read = memory_region_ram_device_read,
.write = memory_region_ram_device_write,
.endianness = DEVICE_HOST_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
.unaligned = true,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
.unaligned = true,
},
};
bool memory_region_access_valid(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool is_write,
MemTxAttrs attrs)
{
int access_size_min, access_size_max;
int access_size, i;
if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
return false;
}
if (!mr->ops->valid.accepts) {
return true;
}
access_size_min = mr->ops->valid.min_access_size;
if (!mr->ops->valid.min_access_size) {
access_size_min = 1;
}
access_size_max = mr->ops->valid.max_access_size;
if (!mr->ops->valid.max_access_size) {
access_size_max = 4;
}
access_size = MAX(MIN(size, access_size_max), access_size_min);
for (i = 0; i < size; i += access_size) {
if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
is_write, attrs)) {
return false;
}
}
return true;
}
static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
*pval = 0;
if (mr->ops->read) {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor,
mr, attrs);
} else if (mr->ops->read_with_attrs) {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_with_attrs_accessor,
mr, attrs);
} else {
return access_with_adjusted_size(addr, pval, size, 1, 4,
memory_region_oldmmio_read_accessor,
mr, attrs);
}
}
MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
MemTxResult r;
if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
*pval = unassigned_mem_read(mr, addr, size);
return MEMTX_DECODE_ERROR;
}
r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
adjust_endianness(mr, pval, size);
return r;
}
/* Return true if an eventfd was signalled */
static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs)
{
MemoryRegionIoeventfd ioeventfd = {
.addr = addrrange_make(int128_make64(addr), int128_make64(size)),
.data = data,
};
unsigned i;
for (i = 0; i < mr->ioeventfd_nb; i++) {
ioeventfd.match_data = mr->ioeventfds[i].match_data;
ioeventfd.e = mr->ioeventfds[i].e;
if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
event_notifier_set(ioeventfd.e);
return true;
}
}
return false;
}
MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs)
{
if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
unassigned_mem_write(mr, addr, data, size);
return MEMTX_DECODE_ERROR;
}
adjust_endianness(mr, &data, size);
if ((!kvm_eventfds_enabled()) &&
memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
return MEMTX_OK;
}
if (mr->ops->write) {
return access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr,
attrs);
} else if (mr->ops->write_with_attrs) {
return
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_with_attrs_accessor,
mr, attrs);
} else {
return access_with_adjusted_size(addr, &data, size, 1, 4,
memory_region_oldmmio_write_accessor,
mr, attrs);
}
}
void memory_region_init_io(MemoryRegion *mr,
Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(mr, owner, name, size);
mr->ops = ops ? ops : &unassigned_mem_ops;
mr->opaque = opaque;
mr->terminates = true;
}
void memory_region_init_ram_nomigrate(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
}
void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
bool share,
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(size, share, mr, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
void memory_region_init_resizeable_ram(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
uint64_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
mr, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
#ifdef __linux__
void memory_region_init_ram_from_file(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
uint64_t align,
bool share,
const char *path,
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->align = align;
mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
void memory_region_init_ram_from_fd(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
bool share,
int fd,
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
#endif
void memory_region_init_ram_ptr(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
/* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
assert(ptr != NULL);
mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
}
void memory_region_init_ram_device_ptr(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init_ram_ptr(mr, owner, name, size, ptr);
mr->ram_device = true;
mr->ops = &ram_device_mem_ops;
mr->opaque = mr;
}
void memory_region_init_alias(MemoryRegion *mr,
Object *owner,
const char *name,
MemoryRegion *orig,
hwaddr offset,
uint64_t size)
{
memory_region_init(mr, owner, name, size);
mr->alias = orig;
mr->alias_offset = offset;
}
void memory_region_init_rom_nomigrate(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->readonly = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(size, false, mr, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size,
Error **errp)
{
assert(ops);
memory_region_init(mr, owner, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
mr->rom_device = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(size, false, mr, errp);
}
void memory_region_init_iommu(void *_iommu_mr,
size_t instance_size,
const char *mrtypename,
Object *owner,
const char *name,
uint64_t size)
{
struct IOMMUMemoryRegion *iommu_mr;
struct MemoryRegion *mr;
object_initialize(_iommu_mr, instance_size, mrtypename);
mr = MEMORY_REGION(_iommu_mr);
memory_region_do_init(mr, owner, name, size);
iommu_mr = IOMMU_MEMORY_REGION(mr);
mr->terminates = true; /* then re-forwards */
QLIST_INIT(&iommu_mr->iommu_notify);
iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
}
static void memory_region_finalize(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
assert(!mr->container);
/* We know the region is not visible in any address space (it
* does not have a container and cannot be a root either because
* it has no references, so we can blindly clear mr->enabled.
* memory_region_set_enabled instead could trigger a transaction
* and cause an infinite loop.
*/
mr->enabled = false;
memory_region_transaction_begin();
while (!QTAILQ_EMPTY(&mr->subregions)) {
MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
memory_region_del_subregion(mr, subregion);
}
memory_region_transaction_commit();
mr->destructor(mr);
memory_region_clear_coalescing(mr);
g_free((char *)mr->name);
g_free(mr->ioeventfds);
}
Object *memory_region_owner(MemoryRegion *mr)
{
Object *obj = OBJECT(mr);
return obj->parent;
}
void memory_region_ref(MemoryRegion *mr)
{
/* MMIO callbacks most likely will access data that belongs
* to the owner, hence the need to ref/unref the owner whenever
* the memory region is in use.
*
* The memory region is a child of its owner. As long as the
* owner doesn't call unparent itself on the memory region,
* ref-ing the owner will also keep the memory region alive.
* Memory regions without an owner are supposed to never go away;
* we do not ref/unref them because it slows down DMA sensibly.
*/
if (mr && mr->owner) {
object_ref(mr->owner);
}
}
void memory_region_unref(MemoryRegion *mr)
{
if (mr && mr->owner) {
object_unref(mr->owner);
}
}
uint64_t memory_region_size(MemoryRegion *mr)
{
if (int128_eq(mr->size, int128_2_64())) {
return UINT64_MAX;
}
return int128_get64(mr->size);
}
const char *memory_region_name(const MemoryRegion *mr)
{
if (!mr->name) {
((MemoryRegion *)mr)->name =
object_get_canonical_path_component(OBJECT(mr));
}
return mr->name;
}
bool memory_region_is_ram_device(MemoryRegion *mr)
{
return mr->ram_device;
}
uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
{
uint8_t mask = mr->dirty_log_mask;
if (global_dirty_log && mr->ram_block) {
mask |= (1 << DIRTY_MEMORY_MIGRATION);
}
return mask;
}
bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
{
return memory_region_get_dirty_log_mask(mr) & (1 << client);
}
static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
{
IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
IOMMUNotifier *iommu_notifier;
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
flags |= iommu_notifier->notifier_flags;
}
if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
imrc->notify_flag_changed(iommu_mr,
iommu_mr->iommu_notify_flags,
flags);
}
iommu_mr->iommu_notify_flags = flags;
}
void memory_region_register_iommu_notifier(MemoryRegion *mr,
IOMMUNotifier *n)
{
IOMMUMemoryRegion *iommu_mr;
if (mr->alias) {
memory_region_register_iommu_notifier(mr->alias, n);
return;
}
/* We need to register for at least one bitfield */
iommu_mr = IOMMU_MEMORY_REGION(mr);
assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
assert(n->start <= n->end);
assert(n->iommu_idx >= 0 &&
n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
memory_region_update_iommu_notify_flags(iommu_mr);
}
uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (imrc->get_min_page_size) {
return imrc->get_min_page_size(iommu_mr);
}
return TARGET_PAGE_SIZE;
}
void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
{
MemoryRegion *mr = MEMORY_REGION(iommu_mr);
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
hwaddr addr, granularity;
IOMMUTLBEntry iotlb;
/* If the IOMMU has its own replay callback, override */
if (imrc->replay) {
imrc->replay(iommu_mr, n);
return;
}
granularity = memory_region_iommu_get_min_page_size(iommu_mr);
for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
if (iotlb.perm != IOMMU_NONE) {
n->notify(n, &iotlb);
}
/* if (2^64 - MR size) < granularity, it's possible to get an
* infinite loop here. This should catch such a wraparound */
if ((addr + granularity) < addr) {
break;
}
}
}
void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
{
IOMMUNotifier *notifier;
IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
memory_region_iommu_replay(iommu_mr, notifier);
}
}
void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
IOMMUNotifier *n)
{
IOMMUMemoryRegion *iommu_mr;
if (mr->alias) {
memory_region_unregister_iommu_notifier(mr->alias, n);
return;
}
QLIST_REMOVE(n, node);
iommu_mr = IOMMU_MEMORY_REGION(mr);
memory_region_update_iommu_notify_flags(iommu_mr);
}
void memory_region_notify_one(IOMMUNotifier *notifier,
IOMMUTLBEntry *entry)
{
IOMMUNotifierFlag request_flags;
/*
* Skip the notification if the notification does not overlap
* with registered range.
*/
if (notifier->start > entry->iova + entry->addr_mask ||
notifier->end < entry->iova) {
return;
}
if (entry->perm & IOMMU_RW) {
request_flags = IOMMU_NOTIFIER_MAP;
} else {
request_flags = IOMMU_NOTIFIER_UNMAP;
}
if (notifier->notifier_flags & request_flags) {
notifier->notify(notifier, entry);
}
}
void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
int iommu_idx,
IOMMUTLBEntry entry)
{
IOMMUNotifier *iommu_notifier;
assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
if (iommu_notifier->iommu_idx == iommu_idx) {
memory_region_notify_one(iommu_notifier, &entry);
}
}
}
int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
enum IOMMUMemoryRegionAttr attr,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (!imrc->get_attr) {
return -EINVAL;
}
return imrc->get_attr(iommu_mr, attr, data);
}
int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
MemTxAttrs attrs)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (!imrc->attrs_to_index) {
return 0;
}
return imrc->attrs_to_index(iommu_mr, attrs);
}
int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (!imrc->num_indexes) {
return 1;
}
return imrc->num_indexes(iommu_mr);
}
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
{
uint8_t mask = 1 << client;
uint8_t old_logging;
assert(client == DIRTY_MEMORY_VGA);
old_logging = mr->vga_logging_count;
mr->vga_logging_count += log ? 1 : -1;
if (!!old_logging == !!mr->vga_logging_count) {
return;
}
memory_region_transaction_begin();
mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client)
{
assert(mr->ram_block);
return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
size, client);
}
void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size)
{
assert(mr->ram_block);
cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
size,
memory_region_get_dirty_log_mask(mr));
}
static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
{
MemoryListener *listener;
AddressSpace *as;
FlatView *view;
FlatRange *fr;
/* If the same address space has multiple log_sync listeners, we
* visit that address space's FlatView multiple times. But because
* log_sync listeners are rare, it's still cheaper than walking each
* address space once.
*/
QTAILQ_FOREACH(listener, &memory_listeners, link) {
if (!listener->log_sync) {
continue;
}
as = listener->address_space;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
MemoryRegionSection mrs = section_from_flat_range(fr, view);
listener->log_sync(listener, &mrs);
}
}
flatview_unref(view);
}
}
DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
hwaddr addr,
hwaddr size,
unsigned client)
{
assert(mr->ram_block);
memory_region_sync_dirty_bitmap(mr);
return cpu_physical_memory_snapshot_and_clear_dirty(
memory_region_get_ram_addr(mr) + addr, size, client);
}
bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
hwaddr addr, hwaddr size)
{
assert(mr->ram_block);
return cpu_physical_memory_snapshot_get_dirty(snap,
memory_region_get_ram_addr(mr) + addr, size);
}
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
{
if (mr->readonly != readonly) {
memory_region_transaction_begin();
mr->readonly = readonly;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
}
void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
{
if (mr->romd_mode != romd_mode) {
memory_region_transaction_begin();
mr->romd_mode = romd_mode;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
}
void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client)
{
assert(mr->ram_block);
cpu_physical_memory_test_and_clear_dirty(
memory_region_get_ram_addr(mr) + addr, size, client);
}
int memory_region_get_fd(MemoryRegion *mr)
{
int fd;
rcu_read_lock();
while (mr->alias) {
mr = mr->alias;
}
fd = mr->ram_block->fd;
rcu_read_unlock();
return fd;
}
void *memory_region_get_ram_ptr(MemoryRegion *mr)
{
void *ptr;
uint64_t offset = 0;
rcu_read_lock();
while (mr->alias) {
offset += mr->alias_offset;
mr = mr->alias;
}
assert(mr->ram_block);
ptr = qemu_map_ram_ptr(mr->ram_block, offset);
rcu_read_unlock();
return ptr;
}
MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
{
RAMBlock *block;
block = qemu_ram_block_from_host(ptr, false, offset);
if (!block) {
return NULL;
}
return block->mr;
}
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
{
return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
}
void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
{
assert(mr->ram_block);
qemu_ram_resize(mr->ram_block, newsize, errp);
}
static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
CoalescedMemoryRange *cmr;
AddrRange tmp;
MemoryRegionSection section;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
if (fr->mr == mr) {
section = (MemoryRegionSection) {
.fv = view,
.offset_within_address_space = int128_get64(fr->addr.start),
.size = fr->addr.size,
};
MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
int128_get64(fr->addr.start),
int128_get64(fr->addr.size));
QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
tmp = addrrange_shift(cmr->addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (!addrrange_intersects(tmp, fr->addr)) {
continue;
}
tmp = addrrange_intersection(tmp, fr->addr);
MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
int128_get64(tmp.start),
int128_get64(tmp.size));
}
}
}
flatview_unref(view);
}
static void memory_region_update_coalesced_range(MemoryRegion *mr)
{
AddressSpace *as;
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
memory_region_update_coalesced_range_as(mr, as);
}
}
void memory_region_set_coalescing(MemoryRegion *mr)
{
memory_region_clear_coalescing(mr);
memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
}
void memory_region_add_coalescing(MemoryRegion *mr,
hwaddr offset,
uint64_t size)
{
CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
memory_region_update_coalesced_range(mr);
memory_region_set_flush_coalesced(mr);
}
void memory_region_clear_coalescing(MemoryRegion *mr)
{
CoalescedMemoryRange *cmr;
bool updated = false;
qemu_flush_coalesced_mmio_buffer();
mr->flush_coalesced_mmio = false;
while (!QTAILQ_EMPTY(&mr->coalesced)) {
cmr = QTAILQ_FIRST(&mr->coalesced);
QTAILQ_REMOVE(&mr->coalesced, cmr, link);
g_free(cmr);
updated = true;
}
if (updated) {
memory_region_update_coalesced_range(mr);
}
}
void memory_region_set_flush_coalesced(MemoryRegion *mr)
{
mr->flush_coalesced_mmio = true;
}
void memory_region_clear_flush_coalesced(MemoryRegion *mr)
{
qemu_flush_coalesced_mmio_buffer();
if (QTAILQ_EMPTY(&mr->coalesced)) {
mr->flush_coalesced_mmio = false;
}
}
void memory_region_clear_global_locking(MemoryRegion *mr)
{
mr->global_locking = false;
}
static bool userspace_eventfd_warning;
void memory_region_add_eventfd(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool match_data,
uint64_t data,
EventNotifier *e)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.e = e,
};
unsigned i;
if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
userspace_eventfd_warning))) {
userspace_eventfd_warning = true;
error_report("Using eventfd without MMIO binding in KVM. "
"Suboptimal performance expected");
}
if (size) {
adjust_endianness(mr, &mrfd.data, size);
}
memory_region_transaction_begin();
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
break;
}
}
++mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
mr->ioeventfds[i] = mrfd;
ioeventfd_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
void memory_region_del_eventfd(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool match_data,
uint64_t data,
EventNotifier *e)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.e = e,
};
unsigned i;
if (size) {
adjust_endianness(mr, &mrfd.data, size);
}
memory_region_transaction_begin();
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
break;
}
}
assert(i != mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
--mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
ioeventfd_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
static void memory_region_update_container_subregions(MemoryRegion *subregion)
{
MemoryRegion *mr = subregion->container;
MemoryRegion *other;
memory_region_transaction_begin();
memory_region_ref(subregion);
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->priority >= other->priority) {
QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
goto done;
}
}
QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
done:
memory_region_update_pending |= mr->enabled && subregion->enabled;
memory_region_transaction_commit();
}
static void memory_region_add_subregion_common(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
assert(!subregion->container);
subregion->container = mr;
subregion->addr = offset;
memory_region_update_container_subregions(subregion);
}
void memory_region_add_subregion(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
subregion->priority = 0;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_add_subregion_overlap(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion,
int priority)
{
subregion->priority = priority;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion)
{
memory_region_transaction_begin();
assert(subregion->container == mr);
subregion->container = NULL;
QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
memory_region_unref(subregion);
memory_region_update_pending |= mr->enabled && subregion->enabled;
memory_region_transaction_commit();
}
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
{
if (enabled == mr->enabled) {
return;
}
memory_region_transaction_begin();
mr->enabled = enabled;
memory_region_update_pending = true;
memory_region_transaction_commit();
}
void memory_region_set_size(MemoryRegion *mr, uint64_t size)
{
Int128 s = int128_make64(size);
if (size == UINT64_MAX) {
s = int128_2_64();
}
if (int128_eq(s, mr->size)) {
return;
}
memory_region_transaction_begin();
mr->size = s;
memory_region_update_pending = true;
memory_region_transaction_commit();
}
static void memory_region_readd_subregion(MemoryRegion *mr)
{
MemoryRegion *container = mr->container;
if (container) {
memory_region_transaction_begin();
memory_region_ref(mr);
memory_region_del_subregion(container, mr);
mr->container = container;
memory_region_update_container_subregions(mr);
memory_region_unref(mr);
memory_region_transaction_commit();
}
}
void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
{
if (addr != mr->addr) {
mr->addr = addr;
memory_region_readd_subregion(mr);
}
}
void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
{
assert(mr->alias);
if (offset == mr->alias_offset) {
return;
}
memory_region_transaction_begin();
mr->alias_offset = offset;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
uint64_t memory_region_get_alignment(const MemoryRegion *mr)
{
return mr->align;
}
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
{
const AddrRange *addr = addr_;
const FlatRange *fr = fr_;
if (int128_le(addrrange_end(*addr), fr->addr.start)) {
return -1;
} else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
return 1;
}
return 0;
}
static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
{
return bsearch(&addr, view->ranges, view->nr,
sizeof(FlatRange), cmp_flatrange_addr);
}
bool memory_region_is_mapped(MemoryRegion *mr)
{
return mr->container ? true : false;
}
/* Same as memory_region_find, but it does not add a reference to the
* returned region. It must be called from an RCU critical section.
*/
static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret = { .mr = NULL };
MemoryRegion *root;
AddressSpace *as;
AddrRange range;
FlatView *view;
FlatRange *fr;
addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
addr += root->addr;
}
as = memory_region_to_address_space(root);
if (!as) {
return ret;
}
range = addrrange_make(int128_make64(addr), int128_make64(size));
view = address_space_to_flatview(as);
fr = flatview_lookup(view, range);
if (!fr) {
return ret;
}
while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
--fr;
}
ret.mr = fr->mr;
ret.fv = view;
range = addrrange_intersection(range, fr->addr);
ret.offset_within_region = fr->offset_in_region;
ret.offset_within_region += int128_get64(int128_sub(range.start,
fr->addr.start));
ret.size = range.size;
ret.offset_within_address_space = int128_get64(range.start);
ret.readonly = fr->readonly;
return ret;
}
MemoryRegionSection memory_region_find(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret;
rcu_read_lock();
ret = memory_region_find_rcu(mr, addr, size);
if (ret.mr) {
memory_region_ref(ret.mr);
}
rcu_read_unlock();
return ret;
}
bool memory_region_present(MemoryRegion *container, hwaddr addr)
{
MemoryRegion *mr;
rcu_read_lock();
mr = memory_region_find_rcu(container, addr, 1).mr;
rcu_read_unlock();
return mr && mr != container;
}
void memory_global_dirty_log_sync(void)
{
memory_region_sync_dirty_bitmap(NULL);
}
static VMChangeStateEntry *vmstate_change;
void memory_global_dirty_log_start(void)
{
if (vmstate_change) {
qemu_del_vm_change_state_handler(vmstate_change);
vmstate_change = NULL;
}
global_dirty_log = true;
MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
/* Refresh DIRTY_LOG_MIGRATION bit. */
memory_region_transaction_begin();
memory_region_update_pending = true;
memory_region_transaction_commit();
}
static void memory_global_dirty_log_do_stop(void)
{
global_dirty_log = false;
/* Refresh DIRTY_LOG_MIGRATION bit. */
memory_region_transaction_begin();
memory_region_update_pending = true;
memory_region_transaction_commit();
MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
}
static void memory_vm_change_state_handler(void *opaque, int running,
RunState state)
{
if (running) {
memory_global_dirty_log_do_stop();
if (vmstate_change) {
qemu_del_vm_change_state_handler(vmstate_change);
vmstate_change = NULL;
}
}
}
void memory_global_dirty_log_stop(void)
{
if (!runstate_is_running()) {
if (vmstate_change) {
return;
}
vmstate_change = qemu_add_vm_change_state_handler(
memory_vm_change_state_handler, NULL);
return;
}
memory_global_dirty_log_do_stop();
}
static void listener_add_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
if (listener->begin) {
listener->begin(listener);
}
if (global_dirty_log) {
if (listener->log_global_start) {
listener->log_global_start(listener);
}
}
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
MemoryRegionSection section = section_from_flat_range(fr, view);
if (listener->region_add) {
listener->region_add(listener, &section);
}
if (fr->dirty_log_mask && listener->log_start) {
listener->log_start(listener, &section, 0, fr->dirty_log_mask);
}
}
if (listener->commit) {
listener->commit(listener);
}
flatview_unref(view);
}
static void listener_del_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
if (listener->begin) {
listener->begin(listener);
}
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
MemoryRegionSection section = section_from_flat_range(fr, view);
if (fr->dirty_log_mask && listener->log_stop) {
listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
}
if (listener->region_del) {
listener->region_del(listener, &section);
}
}
if (listener->commit) {
listener->commit(listener);
}
flatview_unref(view);
}
void memory_listener_register(MemoryListener *listener, AddressSpace *as)
{
MemoryListener *other = NULL;
listener->address_space = as;
if (QTAILQ_EMPTY(&memory_listeners)
|| listener->priority >= QTAILQ_LAST(&memory_listeners,
memory_listeners)->priority) {
QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
} else {
QTAILQ_FOREACH(other, &memory_listeners, link) {
if (listener->priority < other->priority) {
break;
}
}
QTAILQ_INSERT_BEFORE(other, listener, link);
}
if (QTAILQ_EMPTY(&as->listeners)
|| listener->priority >= QTAILQ_LAST(&as->listeners,
memory_listeners)->priority) {
QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
} else {
QTAILQ_FOREACH(other, &as->listeners, link_as) {
if (listener->priority < other->priority) {
break;
}
}
QTAILQ_INSERT_BEFORE(other, listener, link_as);
}
listener_add_address_space(listener, as);
}
void memory_listener_unregister(MemoryListener *listener)
{
if (!listener->address_space) {
return;
}
listener_del_address_space(listener, listener->address_space);
QTAILQ_REMOVE(&memory_listeners, listener, link);
QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
listener->address_space = NULL;
}
bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
{
void *host;
unsigned size = 0;
unsigned offset = 0;
Object *new_interface;
if (!mr || !mr->ops->request_ptr) {
return false;
}
/*
* Avoid an update if the request_ptr call
* memory_region_invalidate_mmio_ptr which seems to be likely when we use
* a cache.
*/
memory_region_transaction_begin();
host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
if (!host || !size) {
memory_region_transaction_commit();
return false;
}
new_interface = object_new("mmio_interface");
qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
memory_region_transaction_commit();
return true;
}
typedef struct MMIOPtrInvalidate {
MemoryRegion *mr;
hwaddr offset;
unsigned size;
int busy;
int allocated;
} MMIOPtrInvalidate;
#define MAX_MMIO_INVALIDATE 10
static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
run_on_cpu_data data)
{
MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
MemoryRegion *mr = invalidate_data->mr;
hwaddr offset = invalidate_data->offset;
unsigned size = invalidate_data->size;
MemoryRegionSection section = memory_region_find(mr, offset, size);
qemu_mutex_lock_iothread();
/* Reset dirty so this doesn't happen later. */
cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
if (section.mr != mr) {
/* memory_region_find add a ref on section.mr */
memory_region_unref(section.mr);
if (MMIO_INTERFACE(section.mr->owner)) {
/* We found the interface just drop it. */
object_property_set_bool(section.mr->owner, false, "realized",
NULL);
object_unref(section.mr->owner);
object_unparent(section.mr->owner);
}
}
qemu_mutex_unlock_iothread();
if (invalidate_data->allocated) {
g_free(invalidate_data);
} else {
invalidate_data->busy = 0;
}
}
void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
unsigned size)
{
size_t i;
MMIOPtrInvalidate *invalidate_data = NULL;
for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
invalidate_data = &mmio_ptr_invalidate_list[i];
break;
}
}
if (!invalidate_data) {
invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
invalidate_data->allocated = 1;
}
invalidate_data->mr = mr;
invalidate_data->offset = offset;
invalidate_data->size = size;
async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
RUN_ON_CPU_HOST_PTR(invalidate_data));
}
void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
{
memory_region_ref(root);
as->root = root;
as->current_map = NULL;
as->ioeventfd_nb = 0;
as->ioeventfds = NULL;
QTAILQ_INIT(&as->listeners);
QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
as->name = g_strdup(name ? name : "anonymous");
address_space_update_topology(as);
address_space_update_ioeventfds(as);
}
static void do_address_space_destroy(AddressSpace *as)
{
assert(QTAILQ_EMPTY(&as->listeners));
flatview_unref(as->current_map);
g_free(as->name);
g_free(as->ioeventfds);
memory_region_unref(as->root);
}
void address_space_destroy(AddressSpace *as)
{
MemoryRegion *root = as->root;
/* Flush out anything from MemoryListeners listening in on this */
memory_region_transaction_begin();
as->root = NULL;
memory_region_transaction_commit();
QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
/* At this point, as->dispatch and as->current_map are dummy
* entries that the guest should never use. Wait for the old
* values to expire before freeing the data.
*/
as->root = root;
call_rcu(as, do_address_space_destroy, rcu);
}
static const char *memory_region_type(MemoryRegion *mr)
{
if (memory_region_is_ram_device(mr)) {
return "ramd";
} else if (memory_region_is_romd(mr)) {
return "romd";
} else if (memory_region_is_rom(mr)) {
return "rom";
} else if (memory_region_is_ram(mr)) {
return "ram";
} else {
return "i/o";
}
}
typedef struct MemoryRegionList MemoryRegionList;
struct MemoryRegionList {
const MemoryRegion *mr;
QTAILQ_ENTRY(MemoryRegionList) mrqueue;
};
typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
int128_sub((size), int128_one())) : 0)
#define MTREE_INDENT " "
static void mtree_expand_owner(fprintf_function mon_printf, void *f,
const char *label, Object *obj)
{
DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
mon_printf(f, " %s:{%s", label, dev ? "dev" : "obj");
if (dev && dev->id) {
mon_printf(f, " id=%s", dev->id);
} else {
gchar *canonical_path = object_get_canonical_path(obj);
if (canonical_path) {
mon_printf(f, " path=%s", canonical_path);
g_free(canonical_path);
} else {
mon_printf(f, " type=%s", object_get_typename(obj));
}
}
mon_printf(f, "}");
}
static void mtree_print_mr_owner(fprintf_function mon_printf, void *f,
const MemoryRegion *mr)
{
Object *owner = mr->owner;
Object *parent = memory_region_owner((MemoryRegion *)mr);
if (!owner && !parent) {
mon_printf(f, " orphan");
return;
}
if (owner) {
mtree_expand_owner(mon_printf, f, "owner", owner);
}
if (parent && parent != owner) {
mtree_expand_owner(mon_printf, f, "parent", parent);
}
}
static void mtree_print_mr(fprintf_function mon_printf, void *f,
const MemoryRegion *mr, unsigned int level,
hwaddr base,
MemoryRegionListHead *alias_print_queue,
bool owner)
{
MemoryRegionList *new_ml, *ml, *next_ml;
MemoryRegionListHead submr_print_queue;
const MemoryRegion *submr;
unsigned int i;
hwaddr cur_start, cur_end;
if (!mr) {
return;
}
for (i = 0; i < level; i++) {
mon_printf(f, MTREE_INDENT);
}
cur_start = base + mr->addr;
cur_end = cur_start + MR_SIZE(mr->size);
/*
* Try to detect overflow of memory region. This should never
* happen normally. When it happens, we dump something to warn the
* user who is observing this.
*/
if (cur_start < base || cur_end < cur_start) {
mon_printf(f, "[DETECTED OVERFLOW!] ");
}
if (mr->alias) {
MemoryRegionList *ml;
bool found = false;
/* check if the alias is already in the queue */
QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
if (ml->mr == mr->alias) {
found = true;
}
}
if (!found) {
ml = g_new(MemoryRegionList, 1);
ml->mr = mr->alias;
QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
}
mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
" (prio %d, %s): alias %s @%s " TARGET_FMT_plx
"-" TARGET_FMT_plx "%s",
cur_start, cur_end,
mr->priority,
memory_region_type((MemoryRegion *)mr),
memory_region_name(mr),
memory_region_name(mr->alias),
mr->alias_offset,
mr->alias_offset + MR_SIZE(mr->size),
mr->enabled ? "" : " [disabled]");
if (owner) {
mtree_print_mr_owner(mon_printf, f, mr);
}
} else {
mon_printf(f,
TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s",
cur_start, cur_end,
mr->priority,
memory_region_type((MemoryRegion *)mr),
memory_region_name(mr),
mr->enabled ? "" : " [disabled]");
if (owner) {
mtree_print_mr_owner(mon_printf, f, mr);
}
}
mon_printf(f, "\n");
QTAILQ_INIT(&submr_print_queue);
QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
new_ml = g_new(MemoryRegionList, 1);
new_ml->mr = submr;
QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
if (new_ml->mr->addr < ml->mr->addr ||
(new_ml->mr->addr == ml->mr->addr &&
new_ml->mr->priority > ml->mr->priority)) {
QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
new_ml = NULL;
break;
}
}
if (new_ml) {
QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
}
}
QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
alias_print_queue, owner);
}
QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
g_free(ml);
}
}
struct FlatViewInfo {
fprintf_function mon_printf;
void *f;
int counter;
bool dispatch_tree;
bool owner;
};
static void mtree_print_flatview(gpointer key, gpointer value,
gpointer user_data)
{
FlatView *view = key;
GArray *fv_address_spaces = value;
struct FlatViewInfo *fvi = user_data;
fprintf_function p = fvi->mon_printf;
void *f = fvi->f;
FlatRange *range = &view->ranges[0];
MemoryRegion *mr;
int n = view->nr;
int i;
AddressSpace *as;
p(f, "FlatView #%d\n", fvi->counter);
++fvi->counter;
for (i = 0; i < fv_address_spaces->len; ++i) {
as = g_array_index(fv_address_spaces, AddressSpace*, i);
p(f, " AS \"%s\", root: %s", as->name, memory_region_name(as->root));
if (as->root->alias) {
p(f, ", alias %s", memory_region_name(as->root->alias));
}
p(f, "\n");
}
p(f, " Root memory region: %s\n",
view->root ? memory_region_name(view->root) : "(none)");
if (n <= 0) {
p(f, MTREE_INDENT "No rendered FlatView\n\n");
return;
}
while (n--) {
mr = range->mr;
if (range->offset_in_region) {
p(f, MTREE_INDENT TARGET_FMT_plx "-"
TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx,
int128_get64(range->addr.start),
int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
mr->priority,
range->readonly ? "rom" : memory_region_type(mr),
memory_region_name(mr),
range->offset_in_region);
} else {
p(f, MTREE_INDENT TARGET_FMT_plx "-"
TARGET_FMT_plx " (prio %d, %s): %s",
int128_get64(range->addr.start),
int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
mr->priority,
range->readonly ? "rom" : memory_region_type(mr),
memory_region_name(mr));
}
if (fvi->owner) {
mtree_print_mr_owner(p, f, mr);
}
p(f, "\n");
range++;
}
#if !defined(CONFIG_USER_ONLY)
if (fvi->dispatch_tree && view->root) {
mtree_print_dispatch(p, f, view->dispatch, view->root);
}
#endif
p(f, "\n");
}
static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
gpointer user_data)
{
FlatView *view = key;
GArray *fv_address_spaces = value;
g_array_unref(fv_address_spaces);
flatview_unref(view);
return true;
}
void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
bool dispatch_tree, bool owner)
{
MemoryRegionListHead ml_head;
MemoryRegionList *ml, *ml2;
AddressSpace *as;
if (flatview) {
FlatView *view;
struct FlatViewInfo fvi = {
.mon_printf = mon_printf,
.f = f,
.counter = 0,
.dispatch_tree = dispatch_tree,
.owner = owner,
};
GArray *fv_address_spaces;
GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
/* Gather all FVs in one table */
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
view = address_space_get_flatview(as);
fv_address_spaces = g_hash_table_lookup(views, view);
if (!fv_address_spaces) {
fv_address_spaces = g_array_new(false, false, sizeof(as));
g_hash_table_insert(views, view, fv_address_spaces);
}
g_array_append_val(fv_address_spaces, as);
}
/* Print */
g_hash_table_foreach(views, mtree_print_flatview, &fvi);
/* Free */
g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
g_hash_table_unref(views);
return;
}
QTAILQ_INIT(&ml_head);
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
mon_printf(f, "address-space: %s\n", as->name);
mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head, owner);
mon_printf(f, "\n");
}
/* print aliased regions */
QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head, owner);
mon_printf(f, "\n");
}
QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
g_free(ml);
}
}
void memory_region_init_ram(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
void memory_region_init_rom(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
void memory_region_init_rom_device(MemoryRegion *mr,
struct Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
static const TypeInfo memory_region_info = {
.parent = TYPE_OBJECT,
.name = TYPE_MEMORY_REGION,
.instance_size = sizeof(MemoryRegion),
.instance_init = memory_region_initfn,
.instance_finalize = memory_region_finalize,
};
static const TypeInfo iommu_memory_region_info = {
.parent = TYPE_MEMORY_REGION,
.name = TYPE_IOMMU_MEMORY_REGION,
.class_size = sizeof(IOMMUMemoryRegionClass),
.instance_size = sizeof(IOMMUMemoryRegion),
.instance_init = iommu_memory_region_initfn,
.abstract = true,
};
static void memory_register_types(void)
{
type_register_static(&memory_region_info);
type_register_static(&iommu_memory_region_info);
}
type_init(memory_register_types)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化