代码拉取完成,页面将自动刷新
同步操作将从 kerlomz/captcha_trainer 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <kerlomz@gmail.com>
import io
import PIL.Image
import cv2
import numpy as np
import tensorflow as tf
from config import *
from pretreatment import preprocessing
PATH_MAP = {
RunMode.Trains: TRAINS_PATH,
RunMode.Test: TEST_PATH
}
REGEX_MAP = {
RunMode.Trains: TRAINS_REGEX,
RunMode.Test: TEST_REGEX
}
def encode_maps():
return {char: i for i, char in enumerate(GEN_CHAR_SET, 0)}
# Training is not useful for decoding
# Here is for debugging, positioning error source use
# def decode_maps():
# return {i: char for i, char in enumerate(GEN_CHAR_SET, 0)}
class DataIterator:
def __init__(self, mode: RunMode):
self.mode = mode
self.data_dir = PATH_MAP[mode]
self.image = []
self.image_path = []
self.label_list = []
self.image_batch = []
self.label_batch = []
self._label_batch = []
self._size = 0
@staticmethod
def _encoder(code):
if isinstance(code, bytes):
code = code.decode('utf8')
for k, v in CHAR_REPLACE.items():
if not k or not v:
break
code.replace(k, v)
code = code.lower() if 'LOWER' in CHAR_SET or not CASE_SENSITIVE else code
code = code.upper() if 'UPPER' in CHAR_SET else code
try:
return [SPACE_INDEX if code == SPACE_TOKEN else encode_maps()[c] for c in list(code)]
except KeyError as e:
exception(
'The sample label {} contains invalid charset: {}.'.format(
code, e.args[0]
), ConfigException.SAMPLE_LABEL_ERROR
)
def read_sample_from_files(self, data_set=None):
if data_set:
self.image_path = data_set
try:
self.label_list = [
self._encoder(re.search(REGEX_MAP[self.mode], i.split(PATH_SPLIT)[-1]).group()) for i in data_set
]
except AttributeError as e:
regex_not_found = "group" in e.args[0]
if regex_not_found:
exception(
"Configured {} is '{}', it may be wrong and unable to get label properly.".format(
"TrainRegex" if self.mode == RunMode.Trains else "TestRegex",
TRAINS_REGEX if self.mode == RunMode.Trains else TEST_REGEX
),
ConfigException.GET_LABEL_REGEX_ERROR
)
else:
for root, sub_folder, file_list in os.walk(self.data_dir):
for file_path in file_list:
image_name = os.path.join(root, file_path)
if file_path in IGNORE_FILES:
continue
self.image_path.append(image_name)
# Get the label from the file name based on the regular expression.
code = re.search(
REGEX_MAP[self.mode], image_name.split(PATH_SPLIT)[-1]
)
if not code:
exception(
"Configured {} is '{}', it may be wrong and unable to get label properly.".format(
"TrainRegex" if self.mode == RunMode.Trains else "TestRegex",
TRAINS_REGEX if self.mode == RunMode.Trains else TEST_REGEX
),
ConfigException.GET_LABEL_REGEX_ERROR
)
code = code.group()
# The manual verification code platform is not case sensitive,
# - it will affect the accuracy of the training set.
# Here is a case conversion based on the selected character set.
self.label_list.append(self._encoder(code))
self._size = len(self.label_list)
def read_sample_from_tfrecords(self, path):
filename_queue = tf.train.string_input_producer([path])
reader = tf.TFRecordReader()
self._size = len([_ for _ in tf.python_io.tf_record_iterator(path)])
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.string),
'image': tf.FixedLenFeature([], tf.string),
}
)
image = tf.cast(features['image'], tf.string)
label = tf.cast(features['label'], tf.string)
min_after_dequeue = 1000
batch = BATCH_SIZE if self.mode == RunMode.Trains else TEST_BATCH_SIZE
capacity = min_after_dequeue + 3 * batch
self.image_batch, self.label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch,
capacity=capacity,
num_threads=64,
min_after_dequeue=min_after_dequeue
)
@property
def size(self):
return self._size
def labels(self, index):
if (TRAINS_USE_TFRECORDS and self.mode == RunMode.Trains) or (TEST_USE_TFRECORDS and self.mode == RunMode.Test):
return self.label_list
else:
return [self.label_list[i] for i in index]
@staticmethod
def _image(path_or_bytes):
# im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
# The OpenCV cannot handle gif format images, it will return None.
# if im is None:
path_or_stream = io.BytesIO(path_or_bytes) if isinstance(path_or_bytes, bytes) else path_or_bytes
pil_image = PIL.Image.open(path_or_stream)
rgb = pil_image.split()
size = pil_image.size
if len(rgb) > 3 and REPLACE_TRANSPARENT:
background = PIL.Image.new('RGB', pil_image.size, (255, 255, 255))
background.paste(pil_image, (0, 0, size[0], size[1]), pil_image)
pil_image = background
pil_image = pil_image.convert('L')
im = np.array(pil_image)
im = preprocessing(im, BINARYZATION, SMOOTH, BLUR).astype(np.float32)
im = cv2.resize(im, (RESIZE[0], RESIZE[1]))
im = im.swapaxes(0, 1)
return np.array(im[:, :, np.newaxis] / 255.)
@staticmethod
def _get_input_lens(sequences):
lengths = np.asarray([len(_) for _ in sequences], dtype=np.int64)
return sequences, lengths
def generate_batch_by_files(self, index=None):
if index:
image_batch = [self._image(self.image_path[i]) for i in index]
label_batch = [self.label_list[i] for i in index]
else:
image_batch = [self._image(i) for i in self.image_path]
label_batch = self.label_list
return self._generate_batch(image_batch, label_batch)
def _generate_batch(self, image_batch, label_batch):
batch_inputs, batch_seq_len = self._get_input_lens(np.array(image_batch))
batch_labels = sparse_tuple_from_label(label_batch)
self._label_batch = batch_labels
return batch_inputs, batch_seq_len, batch_labels
def generate_batch_by_tfrecords(self, sess):
_image, _label = sess.run([self.image_batch, self.label_batch])
image_batch, label_batch = [], []
for (i1, i2) in zip(_image, _label):
try:
image_batch.append(self._image(i1))
label_batch.append(self._encoder(i2))
except OSError:
continue
self._label_batch = label_batch
self.label_list = label_batch
return self._generate_batch(image_batch, label_batch)
def accuracy_calculation(original_seq, decoded_seq, ignore_value=-1):
original_seq_len = len(original_seq)
decoded_seq_len = len(decoded_seq)
if original_seq_len != decoded_seq_len:
print(original_seq)
print('original lengths {} is different from the decoded_seq {}, please check again'.format(
original_seq_len,
decoded_seq_len
))
return 0
count = 0
# Here is for debugging, positioning error source use
# error_sample = []
for i, origin_label in enumerate(original_seq):
decoded_label = [j for j in decoded_seq[i] if j != ignore_value]
if i < 5:
print(i, len(origin_label), len(decoded_label), origin_label, decoded_label)
if origin_label == decoded_label:
count += 1
# Training is not useful for decoding
# Here is for debugging, positioning error source use
# if origin_label != decoded_label and len(error_sample) < 500:
# error_sample.append({
# "origin": "".join([decode_maps()[i] for i in origin_label]),
# "decode": "".join([decode_maps()[i] for i in decoded_label])
# })
# print(error_sample)
return count * 1.0 / len(original_seq)
# Convert a sequence list to a sparse matrix
def sparse_tuple_from_label(sequences, dtype=np.int32):
indices = []
values = []
for n, seq in enumerate(sequences):
indices.extend(zip([n] * len(seq), range(0, len(seq), 1)))
values.extend(seq)
indices = np.asarray(indices, dtype=np.int64)
values = np.asarray(values, dtype=dtype)
shape = np.asarray([len(sequences), np.asarray(indices).max(0)[1] + 1], dtype=np.int64)
return indices, values, shape
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。