加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
indicator.py 7.47 KB
一键复制 编辑 原始数据 按行查看 历史
云金杞 提交于 2022-12-02 09:48 . 更新backtrader的注释
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2020 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from .utils.py3 import range, with_metaclass
from .lineiterator import LineIterator, IndicatorBase
from .lineseries import LineSeriesMaker, Lines
from .metabase import AutoInfoClass
# 指标元类
class MetaIndicator(IndicatorBase.__class__):
# 指标名称(_refname)
_refname = '_indcol'
# 指标列
_indcol = dict()
# 指标缓存
_icache = dict()
# 指标缓存使用
_icacheuse = False
# 类方法,清除缓存
@classmethod
def cleancache(cls):
cls._icache = dict()
# 类方法,设置是否使用缓存
@classmethod
def usecache(cls, onoff):
cls._icacheuse = onoff
# Object cache deactivated on 2016-08-17. If the object is being used
# inside another object, the minperiod information carried over
# influences the first usage when being modified during the 2nd usage
# 调用的时候
def __call__(cls, *args, **kwargs):
# 如果不是使用缓存的话,调用元类的__call__方法,生成cls
if not cls._icacheuse:
return super(MetaIndicator, cls).__call__(*args, **kwargs)
# implement a cache to avoid duplicating lines actions
# 如果使用缓存的话,创建一个缓存,避免重复的line行为,下面ckey是一个可以哈希的元组,可以作为字典的key
ckey = (cls, tuple(args), tuple(kwargs.items())) # tuples hashable
# 如果缓存中已经存在了ckey的key和值,直接返回相应的值,如果不是可以哈希的,调用元类的__call__方法,生成cls
try:
return cls._icache[ckey]
except TypeError: # something not hashable
return super(MetaIndicator, cls).__call__(*args, **kwargs)
except KeyError:
pass # hashable but not in the cache
# 如果缓存中没有ckey,那么调用元类的__call__方法,生成一个实例,并把这个实例设为ckey的值
_obj = super(MetaIndicator, cls).__call__(*args, **kwargs)
return cls._icache.setdefault(ckey, _obj)
# 初始化
def __init__(cls, name, bases, dct):
'''
Class has already been created ... register subclasses
'''
# Initialize the class
super(MetaIndicator, cls).__init__(name, bases, dct)
# 如果不是alised ,同时name也不等于指标,同时name并不是以_开头的,
if not cls.aliased and name != 'Indicator' and not name.startswith('_'):
# 获取refattr属性,并添加name和cls到这个属性值中
refattr = getattr(cls, cls._refname)
refattr[name] = cls
# Check if next and once have both been overridden
# 检查next和once是否被重写了
next_over = cls.next != IndicatorBase.next
once_over = cls.once != IndicatorBase.once
# 如果只有next被重写了,但是once没有被重写
if next_over and not once_over:
# No -> need pointer movement to once simulation via next
# 需要通过next来模拟once的指针运动
cls.once = cls.once_via_next
cls.preonce = cls.preonce_via_prenext
cls.oncestart = cls.oncestart_via_nextstart
# 指标类
class Indicator(with_metaclass(MetaIndicator, IndicatorBase)):
# line的类型被设置为指标
_ltype = LineIterator.IndType
# 输出到csv文件被设置成False
csv = False
# 当数据小于当前时间的时候,数据向前移动size
def advance(self, size=1):
# Need intercepting this call to support datas with
# different lengths (timeframes)
if len(self) < len(self._clock):
self.lines.advance(size=size)
# 如果prenext重写了,但是preonce没有被重写,通常的实施方法
def preonce_via_prenext(self, start, end):
# generic implementation if prenext is overridden but preonce is not
# 从start到end进行循环
for i in range(start, end):
# 数据每次增加
for data in self.datas:
data.advance()
# 指标每次增加
for indicator in self._lineiterators[LineIterator.IndType]:
indicator.advance()
# 自身增加
self.advance()
# 每次调用下prenext
self.prenext()
# 如果nextstart重写了,但是oncestart没有重写,需要做的操作,和上一个比较类似
def oncestart_via_nextstart(self, start, end):
# nextstart has been overriden, but oncestart has not and the code is
# here. call the overriden nextstart
for i in range(start, end):
for data in self.datas:
data.advance()
for indicator in self._lineiterators[LineIterator.IndType]:
indicator.advance()
self.advance()
self.nextstart()
# next重写了,但是once没有重写,需要的操作
def once_via_next(self, start, end):
# Not overridden, next must be there ...
for i in range(start, end):
for data in self.datas:
data.advance()
for indicator in self._lineiterators[LineIterator.IndType]:
indicator.advance()
self.advance()
self.next()
# 指标画出多条line的类,下面这两个类,在整个项目中并没有使用到
class MtLinePlotterIndicator(Indicator.__class__):
def donew(cls, *args, **kwargs):
# line的名字
lname = kwargs.pop('name')
# 类的名字
name = cls.__name__
# 获取cls的liens,如果没有,就返回Lines
lines = getattr(cls, 'lines', Lines)
# 对lines进行相应的操作
cls.lines = lines._derive(name, (lname,), 0, [])
# plotlines响应的操作
plotlines = AutoInfoClass
newplotlines = dict()
newplotlines.setdefault(lname, dict())
cls.plotlines = plotlines._derive(name, newplotlines, [], recurse=True)
# Create the object and set the params in place
# 创建具体的类并设置参数
_obj, args, kwargs = super(MtLinePlotterIndicator, cls).donew(*args, **kwargs)
# 设置_obj的owner属性值
_obj.owner = _obj.data.owner._clock
# 增加另一条linebuffer
_obj.data.lines[0].addbinding(_obj.lines[0])
# Return the object and arguments to the chain
return _obj, args, kwargs
# LinePlotterIndicator类,同样没有用到
class LinePlotterIndicator(with_metaclass(MtLinePlotterIndicator, Indicator)):
pass
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化