加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
resamplerfilter.py 33.74 KB
一键复制 编辑 原始数据 按行查看 历史
云金杞 提交于 2022-12-02 09:48 . 更新backtrader的注释
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2020 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from datetime import datetime, date, timedelta
from .dataseries import TimeFrame, _Bar
from .utils.py3 import with_metaclass
from . import metabase
from .utils.date import date2num, num2date
# 这个类仅仅用在了_checkbarover这样一个函数中
# chkdata = DTFaker(data, forcedata) if fromcheck else data
class DTFaker(object):
# This will only be used for data sources which at some point in time
# return None from _load to indicate that a check of the resampler and/or
# notification queue is needed
# This is meant (at least initially) for real-time feeds, because those are
# the ones in need of events like the ones described above.
# These data sources should also be producing ``utc`` time directly because
# the real-time feed is (more often than not) timestamped and utc provides
# a universal reference
# That's why below the timestamp is chosen in UTC and passed directly to
# date2num to avoid a localization. But it is extracted from data.num2date
# to ensure the returned datetime object is localized according to the
# expected output by the user (local timezone or any specified)
# 初始化
def __init__(self, data, forcedata=None):
# 数据
self.data = data
# Aliases
self.datetime = self
self.p = self
# 如果forcedata是None的话
if forcedata is None:
# 获取现在的utc时间,并且加上数据的时间补偿
_dtime = datetime.utcnow() + data._timeoffset()
# 把计算得到的utc时间转化成数字
self._dt = dt = date2num(_dtime) # utc-like time
# 把数字时间转化成本地的时间格式的时间
self._dtime = data.num2date(dt) # localized time
# 如果forcedata不是None的话
else:
# 直接从forcedata的列datatime中获取相应的时间作为utc时间
self._dt = forcedata.datetime[0] # utc-like time
# 直接从forcedata中获取本地时间
self._dtime = forcedata.datetime.datetime() # localized time
# 一天交易结束时间
self.sessionend = data.p.sessionend
# 长度
def __len__(self):
return len(self.data)
# 调用的时候返回本地化的日期和时间
def __call__(self, idx=0):
return self._dtime # simulates data.datetime.datetime()
# datetime返回本地化日期和时间
def datetime(self, idx=0):
return self._dtime
# 返回本地化的日期
def date(self, idx=0):
return self._dtime.date()
# 返回本地化的时间
def time(self, idx=0):
return self._dtime.time()
# 返回数据的日历
@property
def _calendar(self):
return self.data._calendar
# 如果idx=0,返回utc的数字格式的时间,否则,返回-inf
def __getitem__(self, idx):
return self._dt if idx == 0 else float('-inf')
# 数字转化成日期和时间
def num2date(self, *args, **kwargs):
return self.data.num2date(*args, **kwargs)
# 日期和时间转化成数字
def date2num(self, *args, **kwargs):
return self.data.date2num(*args, **kwargs)
# 获取交易日结束的时间
def _getnexteos(self):
return self.data._getnexteos()
# resampler的基类
class _BaseResampler(with_metaclass(metabase.MetaParams, object)):
# 参数
params = (
('bar2edge', True),
('adjbartime', True),
('rightedge', True),
('boundoff', 0),
('timeframe', TimeFrame.Days),
('compression', 1),
('takelate', True),
('sessionend', True),
)
# 初始化
def __init__(self, data):
# 如果时间周期小于日,但是大于tick,subdays就是True,subdays代表是日内的时间周期
self.subdays = TimeFrame.Ticks < self.p.timeframe < TimeFrame.Days
# 如果时间周期小于周,subweeks就是True
self.subweeks = self.p.timeframe < TimeFrame.Weeks
# 如果不是subdays,并且数据的时间周期等于参数的时间周期,并且参数的周期数除以数据周期数余数是0,componly是True
self.componly = (not self.subdays and
data._timeframe == self.p.timeframe and
not (self.p.compression % data._compression))
# 创建一个对象,用于保存bar的数据
self.bar = _Bar(maxdate=True) # bar holder
# 产生的bar的数目,用于控制周期数
self.compcount = 0 # count of produced bars to control compression
# 是否是第一个bar
self._firstbar = True
# 如果bar2edge、adjbartime、subweeks都是True的话,doadjusttime就是True
self.doadjusttime = (self.p.bar2edge and self.p.adjbartime and
self.subweeks)
# 该交易日的结束时间
self._nexteos = None
# Modify data information according to own parameters
# 初始化的时候,根据参数修改data的属性
# 数据的resampling是1
data.resampling = 1
# replaying等于replaying
data.replaying = self.replaying
# 数据的时间周期等于参数的时间周期
data._timeframe = self.p.timeframe
# 数据的周期数等于参数的周期数
data._compression = self.p.compression
self.data = data
# 晚到的数据怎么处理,如果不是subdays,返回False,如果data长度大于1并且现在时间小于等于上一个时间,返回True
def _latedata(self, data):
# new data at position 0, still untouched from stream
if not self.subdays:
return False
# Time already delivered
return len(data) > 1 and data.datetime[0] <= data.datetime[-1]
# 是否检查bar结束
def _checkbarover(self, data, fromcheck=False, forcedata=None):
# 检查的数据,如果fromcheck是True的话,使用DTFaker生成实例,否则使用data
chkdata = DTFaker(data, forcedata) if fromcheck else data
# 是否结束
isover = False
# 如果不是componly,并且_barover(chkdata)是False的话,返回False
if not self.componly and not self._barover(chkdata):
return isover
# 如果是日内的话,并且bar2edge是True的话,返回True
if self.subdays and self.p.bar2edge:
isover = True
# 如果fromcheck是False的话
elif not fromcheck: # fromcheck doesn't increase compcount
# compcount+1
self.compcount += 1
# 如果compcount除以周期数等于0,返回True
if not (self.compcount % self.p.compression):
# boundary crossed and enough bars for compression ... proceed
isover = True
return isover
# 判断data数据是否结束
def _barover(self, data):
# 时间周期
tframe = self.p.timeframe
# 如果时间周期等于tick,返回bar.isopen()
if tframe == TimeFrame.Ticks:
# Ticks is already the lowest level
return self.bar.isopen()
# 如果时间周期小于day,调用_barover_subdays(data)
elif tframe < TimeFrame.Days:
return self._barover_subdays(data)
# 如果时间周期等于day,调用_barover_days(data)
elif tframe == TimeFrame.Days:
return self._barover_days(data)
# 如果时间周期等于week,调用_barover_weeks(data)
elif tframe == TimeFrame.Weeks:
return self._barover_weeks(data)
# 如果时间周期等于月,调用_barover_months(data)
elif tframe == TimeFrame.Months:
return self._barover_months(data)
# 如果时间周期等于年,调用_barover_years(data)
elif tframe == TimeFrame.Years:
return self._barover_years(data)
# 设置session结束的时间
def _eosset(self):
if self._nexteos is None:
self._nexteos, self._nextdteos = self.data._getnexteos()
return
# 检查session结束的时间
def _eoscheck(self, data, seteos=True, exact=False):
# 如果seteos是True的话,直接调用_eosset计算session结束的时间
if seteos:
self._eosset()
# 对比当前的数据时间和session结束的时间
equal = data.datetime[0] == self._nextdteos
grter = data.datetime[0] > self._nextdteos
# 如果exact是True的话,ret就等于equal,
# 如果不是的话,如果grter是True的话,如果bar.isopen()是True,bar.datetime小于下一个结束时间,ret等于True
# 否则,ret就等于equal
if exact:
ret = equal
else:
# if the compared data goes over the endofsession
# make sure the resampled bar is open and has something before that
# end of session. It could be a weekend and nothing was delivered
# until Monday
if grter:
ret = (self.bar.isopen() and
self.bar.datetime <= self._nextdteos)
else:
ret = equal
# 如果ret是True的话,_lasteos等于_nexteos,_lastdteos等于_nextdteos
# 并把_nexteos和_nextdteos分别设置成None和-inf
if ret:
self._lasteos = self._nexteos
self._lastdteos = self._nextdteos
self._nexteos = None
self._nextdteos = float('-inf')
return ret
# 检查日
def _barover_days(self, data):
return self._eoscheck(data)
# 检查周
def _barover_weeks(self, data):
# 如果数据的_calendar是None的话
if self.data._calendar is None:
# 根据日期得到具体的年,周数目和日
year, week, _ = data.num2date(self.bar.datetime).date().isocalendar()
# 得到bar的周数目
yearweek = year * 100 + week
# 得到数据的年、周数目和日,并得到数据的周数目
baryear, barweek, _ = data.datetime.date().isocalendar()
bar_yearweek = baryear * 100 + barweek
# 如果数据的周数目大于bar的周数目,返回True,否则,返回False
return bar_yearweek > yearweek
# 如果数据的_calendar不是None的话,调用last_weekday
else:
return data._calendar.last_weekday(data.datetime.date())
# 检查月
def _barover_months(self, data):
dt = data.num2date(self.bar.datetime).date()
yearmonth = dt.year * 100 + dt.month
bardt = data.datetime.datetime()
bar_yearmonth = bardt.year * 100 + bardt.month
return bar_yearmonth > yearmonth
# 检查年
def _barover_years(self, data):
return (data.datetime.datetime().year >
data.num2date(self.bar.datetime).year)
# 获取时间的点数
def _gettmpoint(self, tm):
'''
Returns the point of time intraday for a given time according to the
timeframe
- Ex 1: 00:05:00 in minutes -> point = 5
- Ex 2: 00:05:20 in seconds -> point = 5 * 60 + 20 = 320
'''
# 分钟点数
point = tm.hour * 60 + tm.minute
# 剩余点数
restpoint = 0
# 如果时间周期小于分钟
if self.p.timeframe < TimeFrame.Minutes:
# 秒的点数
point = point * 60 + tm.second
# 如果时间周期小于秒
if self.p.timeframe < TimeFrame.Seconds:
# point转化成微秒数
point = point * 1e6 + tm.microsecond
# 如果时间周期不小于秒,剩余点数为微秒数
else:
restpoint = tm.microsecond
# 如果时间周期不小于分钟,剩余点数为秒数和微秒数
else:
restpoint = tm.second + tm.microsecond
# 点数加上boundoff
point += self.p.boundoff
return point, restpoint
# 日内bar结束
def _barover_subdays(self, data):
# 如果_eoscheck(data)返回True,那么,函数返回True
if self._eoscheck(data):
return True
# 如果数据的时间小于bar的时间,返回False
if data.datetime[0] < self.bar.datetime:
return False
# Get time objects for the comparisons - in utc-like format
# 获取bar的和data的时间
tm = num2date(self.bar.datetime).time()
bartm = num2date(data.datetime[0]).time()
# 分别获取self.bar的时间的点数,data的时间的点数
point, _ = self._gettmpoint(tm)
barpoint, _ = self._gettmpoint(bartm)
# 设置ret等于False
ret = False
# 如果data的时间的点数小于bar的时间的点数,返回False
# 如果data的时间的点数大于bar的时间的点数,进一步分析
if barpoint > point:
# The data bar has surpassed the internal bar
# 如果bar2edge是False的话,返回True
if not self.p.bar2edge:
# Compression done on simple bar basis (like days)
ret = True
# 如果周期数是1的话,返回True
elif self.p.compression == 1:
# no bar compression requested -> internal bar done
ret = True
# 如果bar2edge是True的话,并且compression不等于1的话,计算两个的点数除以周期数之后的余数
# 如果数据的点数的余数大于bar的点数的余数,返回True
else:
point_comp = point // self.p.compression
barpoint_comp = barpoint // self.p.compression
# Went over boundary including compression
if barpoint_comp > point_comp:
ret = True
return ret
# 检查是否在数据还没有向前移动的情况下提交当前存储的bar
def check(self, data, _forcedata=None):
'''Called to check if the current stored bar has to be delivered in
spite of the data not having moved forward. If no ticks from a live
feed come in, a 5 second resampled bar could be delivered 20 seconds
later. When this method is called the wall clock (incl data time
offset) is called to check if the time has gone so far as to have to
deliver the already stored data
'''
if not self.bar.isopen():
return
return self(data, fromcheck=True, forcedata=_forcedata)
# 判断数据是否是快要形成bar了
def _dataonedge(self, data):
# 如果subweek是False的话,如果data._calendar是None的话,返回False和True
if not self.subweeks:
if data._calendar is None:
return False, True # nothing can be done
# 时间周期
tframe = self.p.timeframe
# ret设置成False
ret = False
# 如果时间周期等于周,调用last_weekday判断
# 如果时间周期等于月,调用last_monthday判断
# 如果时间周期等于年,调用last_yearday判断
if tframe == TimeFrame.Weeks: # Ticks is already the lowest
ret = data._calendar.last_weekday(data.datetime.date())
elif tframe == TimeFrame.Months:
ret = data._calendar.last_monthday(data.datetime.date())
elif tframe == TimeFrame.Years:
ret = data._calendar.last_yearday(data.datetime.date())
# 如果ret是True
if ret:
# Data must be consumed but compression may not be met yet
# Prevent barcheckover from being called because it could again
# increase compcount
# docheckover设置成False
docheckover = False
# compcount+1
self.compcount += 1
# 如果compcount除以compression余数等于0,返回True,否则,返回False
ret = not (self.compcount % self.p.compression)
# 如果ret等于False的话,docheckover等于True
else:
docheckover = True
# 返回ret , docheckover
return ret, docheckover
# _eoscheck检查,返回两个True
if self._eoscheck(data, exact=True):
return True, True
# 如果是日内的话
if self.subdays:
# 获取数据的点数和剩余的点数
point, prest = self._gettmpoint(data.datetime.time())
# 如果剩余点数不为0,返回False和True
if prest:
return False, True # cannot be on boundary, subunits present
# Pass through compression to get boundary and rest over boundary
# 计算boundary和剩余的boundary
bound, brest = divmod(point, self.p.compression)
# if no extra and decomp bound is point
# 如果divmod计算的结果余数为0,返回两个Trye
return (brest == 0 and point == (bound * self.p.compression), True)
# Code overriden by eoscheck
# 这段不会运行
if False and self.p.sessionend:
# Days scenario - get datetime to compare in output timezone
# because p.sessionend is expected in output timezone
bdtime = data.datetime.datetime()
bsend = datetime.combine(bdtime.date(), data.p.sessionend)
return bdtime == bsend
# 如果前面都没有运行到return,返回False,True
return False, True # subweeks, not subdays and not sessionend
# 计算调整的时间
def _calcadjtime(self, greater=False):
if self._nexteos is None:
# Session has been exceeded - end of session is the mark
return self._lastdteos # utc-like
dt = self.data.num2date(self.bar.datetime)
# Get current time
tm = dt.time()
# Get the point of the day in the time frame unit (ex: minute 200)
point, _ = self._gettmpoint(tm)
# Apply compression to update the point position (comp 5 -> 200 // 5)
# point = (point // self.p.compression)
point = point // self.p.compression
# If rightedge (end of boundary is activated) add it unless recursing
point += self.p.rightedge
# Restore point to the timeframe units by de-applying compression
point *= self.p.compression
# Get hours, minutes, seconds and microseconds
extradays = 0
if self.p.timeframe == TimeFrame.Minutes:
ph, pm = divmod(point, 60)
ps = 0
pus = 0
elif self.p.timeframe == TimeFrame.Seconds:
ph, pm = divmod(point, 60 * 60)
pm, ps = divmod(pm, 60)
pus = 0
elif self.p.timeframe <= TimeFrame.MicroSeconds:
ph, pm = divmod(point, 60 * 60 * 1e6)
pm, psec = divmod(pm, 60 * 1e6)
ps, pus = divmod(psec, 1e6)
elif self.p.timeframe == TimeFrame.Days:
# last resort
eost = self._nexteos.time()
ph = eost.hour
pm = eost.minute
ps = eost.second
pus = eost.microsecond
if ph > 23: # went over midnight:
extradays = ph // 24
ph %= 24
# Replace intraday parts with the calculated ones and update it
dt = dt.replace(hour=int(ph), minute=int(pm),
second=int(ps), microsecond=int(pus))
if extradays:
dt += timedelta(days=extradays)
dtnum = self.data.date2num(dt)
return dtnum
# 调整bar的时间
def _adjusttime(self, greater=False, forcedata=None):
'''
Adjusts the time of calculated bar (from underlying data source) by
using the timeframe to the appropriate boundary, with compression taken
into account
Depending on param ``rightedge`` uses the starting boundary or the
ending one
'''
dtnum = self._calcadjtime(greater=greater)
if greater and dtnum <= self.bar.datetime:
return False
self.bar.datetime = dtnum
return True
# 把小周期的数据抽样形成大周期的数据
class Resampler(_BaseResampler):
'''This class resamples data of a given timeframe to a larger timeframe.
Params
- bar2edge (default: True)
resamples using time boundaries as the target. For example with a
"ticks -> 5 seconds" the resulting 5 seconds bars will be aligned to
xx:00, xx:05, xx:10 ...
# 在抽样的时候使用时间边界作为目标,比如如果是ticks数据想要抽样程5秒钟,那么将会在xx:00,xx:05,xx:10这样的时间形成bar
- adjbartime (default: True)
Use the time at the boundary to adjust the time of the delivered
resampled bar instead of the last seen timestamp. If resampling to "5
seconds" the time of the bar will be adjusted for example to hh:mm:05
even if the last seen timestamp was hh:mm:04.33
.. note::
Time will only be adjusted if "bar2edge" is True. It wouldn't make
sense to adjust the time if the bar has not been aligned to a
boundary
# 调整bar最后一个bar的最后的时间,在bar2edge是True的时候,使用最后的边界作为最后一个bar的时间
- rightedge (default: True)
Use the right edge of the time boundaries to set the time.
If False and compressing to 5 seconds the time of a resampled bar for
seconds between hh:mm:00 and hh:mm:04 will be hh:mm:00 (the starting
boundary
If True the used boundary for the time will be hh:mm:05 (the ending
boundary)
# 是否使用右边的时间边界,比如时间边界是hh:mm:00:hh:mm:05,如果设置成True的话,将会使用hh:mm:05
# 设置成False,将会使用hh:mm:00
'''
# 参数
params = (
('bar2edge', True),
('adjbartime', True),
('rightedge', True),
)
replaying = False
# 在数据不再产生bar的时候调用,可以被调用多次,有机会在必须传递bar的时候产生额外的bar
def last(self, data):
'''Called when the data is no longer producing bars
Can be called multiple times. It has the chance to (for example)
produce extra bars which may still be accumulated and have to be
delivered
'''
if self.bar.isopen():
if self.doadjusttime:
self._adjusttime()
data._add2stack(self.bar.lvalues())
self.bar.bstart(maxdate=True) # close the bar to avoid dups
return True
return False
# 调用resampler的时候使用
def __call__(self, data, fromcheck=False, forcedata=None):
'''Called for each set of values produced by the data source'''
consumed = False
onedge = False
docheckover = True
if not fromcheck:
if self._latedata(data):
if not self.p.takelate:
data.backwards()
return True # get a new bar
self.bar.bupdate(data) # update new or existing bar
# push time beyond reference
self.bar.datetime = data.datetime[-1] + 0.000001
data.backwards() # remove used bar
return True
if self.componly: # only if not subdays
# Get a session ref before rewinding
_, self._lastdteos = self.data._getnexteos()
consumed = True
else:
onedge, docheckover = self._dataonedge(data) # for subdays
consumed = onedge
if consumed:
self.bar.bupdate(data) # update new or existing bar
data.backwards() # remove used bar
# if self.bar.isopen and (onedge or (docheckover and checkbarover))
cond = self.bar.isopen()
if cond: # original is and, the 2nd term must also be true
if not onedge: # onedge true is sufficient
if docheckover:
cond = self._checkbarover(data, fromcheck=fromcheck,
forcedata=forcedata)
if cond:
dodeliver = False
if forcedata is not None:
# check our delivery time is not larger than that of forcedata
tframe = self.p.timeframe
if tframe == TimeFrame.Ticks: # Ticks is already the lowest
dodeliver = True
elif tframe == TimeFrame.Minutes:
dtnum = self._calcadjtime(greater=True)
dodeliver = dtnum <= forcedata.datetime[0]
elif tframe == TimeFrame.Days:
dtnum = self._calcadjtime(greater=True)
dodeliver = dtnum <= forcedata.datetime[0]
else:
dodeliver = True
if dodeliver:
if not onedge and self.doadjusttime:
self._adjusttime(greater=True, forcedata=forcedata)
data._add2stack(self.bar.lvalues())
self.bar.bstart(maxdate=True) # bar delivered -> restart
if not fromcheck:
if not consumed:
self.bar.bupdate(data) # update new or existing bar
data.backwards() # remove used bar
return True
# replayer类
class Replayer(_BaseResampler):
'''This class replays data of a given timeframe to a larger timeframe.
It simulates the action of the market by slowly building up (for ex.) a
daily bar from tick/seconds/minutes data
Only when the bar is complete will the "length" of the data be changed
effectively delivering a closed bar
Params
- bar2edge (default: True)
replays using time boundaries as the target of the closed bar. For
example with a "ticks -> 5 seconds" the resulting 5 seconds bars will
be aligned to xx:00, xx:05, xx:10 ...
- adjbartime (default: False)
Use the time at the boundary to adjust the time of the delivered
resampled bar instead of the last seen timestamp. If resampling to "5
seconds" the time of the bar will be adjusted for example to hh:mm:05
even if the last seen timestamp was hh:mm:04.33
.. note::
Time will only be adjusted if "bar2edge" is True. It wouldn't make
sense to adjust the time if the bar has not been aligned to a
boundary
.. note:: if this parameter is True an extra tick with the *adjusted*
time will be introduced at the end of the *replayed* bar
- rightedge (default: True)
Use the right edge of the time boundaries to set the time.
If False and compressing to 5 seconds the time of a resampled bar for
seconds between hh:mm:00 and hh:mm:04 will be hh:mm:00 (the starting
boundary
If True the used boundary for the time will be hh:mm:05 (the ending
boundary)
'''
params = (
('bar2edge', True),
('adjbartime', False),
('rightedge', True),
)
replaying = True
# 调用类的时候运行
def __call__(self, data, fromcheck=False, forcedata=None):
# 消耗
consumed = False
# 在生成bar的时间点
onedge = False
# 晚到的数据
takinglate = False
# 是否检查bar结束
docheckover = True
# 如果fromcheck是False的话
if not fromcheck:
# 调用_latedata判断,看晚到的数据怎么处理,如果返回True
if self._latedata(data):
# 如果takelate是False的话,就生成一个新的bar
if not self.p.takelate:
data.backwards(force=True)
return True # get a new bar
# 设置这两个参数
consumed = True
takinglate = True
# 如果不是日内的话
elif self.componly: # only if not subdays
consumed = True
else:
# 调用_dataonedge,用于判断是否在生成bar的时间和bar是否结束
onedge, docheckover = self._dataonedge(data) # for subdays
consumed = onedge
data._tick_fill(force=True) # update
# 如果consumed是True的话,更新数据,如果takinglate是True的话,给bar设置一个新的时间
if consumed:
self.bar.bupdate(data)
if takinglate:
self.bar.datetime = data.datetime[-1] + 0.000001
# if onedge or (checkbarover and self._checkbarover)
cond = onedge
# 如果当前不是在生成bar的时间点,如果需要检查,就需要检查bar是否结束
if not cond: # original is or, if true it would suffice
if docheckover:
cond = self._checkbarover(data, fromcheck=fromcheck)
# 如果检查结果返回True的话
if cond:
# 如果不是正好在生成bar的时候,并且要调整时间
if not onedge and self.doadjusttime: # insert tick with adjtime
adjusted = self._adjusttime(greater=True)
# 如果需要调整,就调整时间,更新bar
if adjusted:
ago = 0 if (consumed or fromcheck) else -1
# Update to the point right before the new data
data._updatebar(self.bar.lvalues(), forward=False, ago=ago)
# 如果不需要检查
if not fromcheck:
# 如果不是消耗模式,就使用_save2stack保存数据
if not consumed:
# Reopen bar with real new data and save data to queue
self.bar.bupdate(data, reopen=True)
# erase is True, but the tick will not be seen below
# and therefore no need to mark as 1st
data._save2stack(erase=True, force=True)
# 如果是消耗模式,data启动,下个bar是第一根bar
else:
self.bar.bstart(maxdate=True)
self._firstbar = True # next is first
# 如果需要检查
else: # from check
# fromcheck or consumed have forced delivery, reopen
self.bar.bstart(maxdate=True)
self._firstbar = True # next is first
if adjusted:
# after adjusting need to redeliver if this was a check
data._save2stack(erase=True, force=True)
# 如果不需要检查
elif not fromcheck:
if not consumed:
# Data already "forwarded" and we replay to new bar
# No need to go backwards. simply reopen internal cache
self.bar.bupdate(data, reopen=True)
else:
# compression only, used data to update bar, hence remove
# from stream, update existing data, reopen bar
if not self._firstbar: # only discard data if not firstbar
data.backwards(force=True)
data._updatebar(self.bar.lvalues(), forward=False, ago=0)
self.bar.bstart(maxdate=True)
self._firstbar = True # make sure next tick moves forward
# 如果不需要检查
elif not fromcheck:
# not over, update, remove new entry, deliver
if not consumed:
self.bar.bupdate(data)
if not self._firstbar: # only discard data if not firstbar
data.backwards(force=True)
data._updatebar(self.bar.lvalues(), forward=False, ago=0)
self._firstbar = False
return False # the existing bar can be processed by the system
class ResamplerTicks(Resampler):
params = (('timeframe', TimeFrame.Ticks),)
class ResamplerSeconds(Resampler):
params = (('timeframe', TimeFrame.Seconds),)
class ResamplerMinutes(Resampler):
params = (('timeframe', TimeFrame.Minutes),)
class ResamplerDaily(Resampler):
params = (('timeframe', TimeFrame.Days),)
class ResamplerWeekly(Resampler):
params = (('timeframe', TimeFrame.Weeks),)
class ResamplerMonthly(Resampler):
params = (('timeframe', TimeFrame.Months),)
class ResamplerYearly(Resampler):
params = (('timeframe', TimeFrame.Years),)
class ReplayerTicks(Replayer):
params = (('timeframe', TimeFrame.Ticks),)
class ReplayerSeconds(Replayer):
params = (('timeframe', TimeFrame.Seconds),)
class ReplayerMinutes(Replayer):
params = (('timeframe', TimeFrame.Minutes),)
class ReplayerDaily(Replayer):
params = (('timeframe', TimeFrame.Days),)
class ReplayerWeekly(Replayer):
params = (('timeframe', TimeFrame.Weeks),)
class ReplayerMonthly(Replayer):
params = (('timeframe', TimeFrame.Months),)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化