加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
t-dll-proc.cc 28.87 KB
一键复制 编辑 原始数据 按行查看 历史
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062
/*
* Copyright (c) 2000-2022 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.will need a Picture Elements Binary Software
* License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include <iostream>
# include <cstring>
# include "target.h"
# include "ivl_target.h"
# include "compiler.h"
# include "t-dll.h"
# include "netclass.h"
# include <cstdlib>
# include "ivl_alloc.h"
# include "ivl_assert.h"
bool dll_target::process(const NetProcTop*net)
{
bool rc_flag = true;
ivl_process_t obj = (struct ivl_process_s*)
calloc(1, sizeof(struct ivl_process_s));
obj->type_ = net->type();
obj->analog_flag = 0;
FILE_NAME(obj, net);
/* Save the scope of the process. */
obj->scope_ = lookup_scope_(net->scope());
obj->nattr = net->attr_cnt();
obj->attr = fill_in_attributes(net);
/* This little bit causes the process to be completely
generated so that it can be passed to the DLL. The
stmt_cur_ member is used to hold a pointer to the current
statement in progress, and the emit_proc() method fills in
that object.
We know a few things about the current statement: we are
not in the middle of one, and when we are done, we have our
statement back. The asserts check these conditions. */
assert(stmt_cur_ == 0);
stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
rc_flag = net->statement()->emit_proc(this) && rc_flag;
assert(stmt_cur_);
obj->stmt_ = stmt_cur_;
stmt_cur_ = 0;
/* Save the process in the design. */
obj->next_ = des_.threads_;
des_.threads_ = obj;
return rc_flag;
}
void dll_target::task_def(const NetScope*net)
{
ivl_scope_t scop = lookup_scope_(net);
const NetTaskDef*def = net->task_def();
assert(def);
assert(def->proc());
assert(stmt_cur_ == 0);
stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
def->proc()->emit_proc(this);
assert(stmt_cur_);
scop->def = stmt_cur_;
stmt_cur_ = 0;
scop->ports = def->port_count();
if (scop->ports > 0) {
scop->u_.port = new ivl_signal_t[scop->ports];
for (unsigned idx = 0 ; idx < scop->ports ; idx += 1)
scop->u_.port[idx] = find_signal(des_, def->port(idx));
}
}
bool dll_target::func_def(const NetScope*net)
{
ivl_scope_t scop = lookup_scope_(net);
const NetFuncDef*def = net->func_def();
assert(def);
assert(def->proc());
assert(stmt_cur_ == 0);
stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
def->proc()->emit_proc(this);
assert(stmt_cur_);
scop->def = stmt_cur_;
stmt_cur_ = 0;
scop->ports = def->port_count() + 1;
if (scop->ports > 0) {
scop->u_.port = new ivl_signal_t[scop->ports];
for (unsigned idx = 1 ; idx < scop->ports ; idx += 1)
scop->u_.port[idx] = find_signal(des_, def->port(idx-1));
}
/* FIXME: the ivl_target API expects port-0 to be the output
port. This assumes that the return value is a signal, which
is *not* correct. Someday, I'm going to have to change
this, but that will break code generators that use this
result. */
if (const NetNet*ret_sig = def->return_sig())
scop->u_.port[0] = find_signal(des_, ret_sig);
else
scop->u_.port[0] = 0;
/* If there is no return value, then this is a void function. */
return true;
}
/*
* This private function makes the assignment lvals for the various
* kinds of assignment statements.
*/
bool dll_target::make_assign_lvals_(const NetAssignBase*net)
{
bool flag = true;
assert(stmt_cur_);
unsigned cnt = net->l_val_count();
stmt_cur_->u_.assign_.lvals_ = cnt;
stmt_cur_->u_.assign_.lval_ = new struct ivl_lval_s[cnt];
stmt_cur_->u_.assign_.delay = 0;
for (unsigned idx = 0 ; idx < cnt ; idx += 1) {
struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_ + idx;
const NetAssign_*asn = net->l_val(idx);
flag &= make_single_lval_(net, cur, asn);
}
return flag;
}
bool dll_target::make_single_lval_(const LineInfo*li, struct ivl_lval_s*cur, const NetAssign_*asn)
{
bool flag = true;
const NetExpr*loff = asn->get_base();
if (loff == 0) {
cur->loff = 0;
cur->sel_type = IVL_SEL_OTHER;
} else {
loff->expr_scan(this);
cur->loff = expr_;
cur->sel_type = asn->select_type();
expr_ = 0;
}
cur->width_ = asn->lwidth();
if (asn->sig()) {
cur->type_ = IVL_LVAL_REG;
cur->n.sig = find_signal(des_, asn->sig());
} else {
const NetAssign_*asn_nest = asn->nest();
ivl_assert(*li, asn_nest);
struct ivl_lval_s*cur_nest = new struct ivl_lval_s;
make_single_lval_(li, cur_nest, asn_nest);
cur->type_ = IVL_LVAL_LVAL;
cur->n.nest = cur_nest;
}
cur->idx = 0;
// If there is a word select expression, it is
// really an array index. Note that the word index
// expression is already converted to canonical
// form by elaboration.
if (asn->word()) {
assert(expr_ == 0);
asn->word()->expr_scan(this);
cur->type_ = IVL_LVAL_ARR;
cur->idx = expr_;
expr_ = 0;
}
cur->property_idx = asn->get_property_idx();
return flag;
}
void dll_target::proc_alloc(const NetAlloc*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_ALLOC;
stmt_cur_->u_.alloc_.scope = lookup_scope_(net->scope());
}
/*
*/
bool dll_target::proc_assign(const NetAssign*net)
{
bool flag = true;
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_ASSIGN;
FILE_NAME(stmt_cur_, net);
stmt_cur_->u_.assign_.delay = 0;
/* Make the lval fields. */
flag &= make_assign_lvals_(net);
stmt_cur_->u_.assign_.oper = net->assign_operator();
assert(expr_ == 0);
net->rval()->expr_scan(this);
stmt_cur_->u_.assign_.rval_ = expr_;
expr_ = 0;
const NetExpr*del = net->get_delay();
if (del) {
del->expr_scan(this);
stmt_cur_->u_.assign_.delay = expr_;
expr_ = 0;
}
return flag;
}
void dll_target::proc_assign_nb(const NetAssignNB*net)
{
const NetExpr* delay_exp = net->get_delay();
const NetExpr* cnt_exp = net->get_count();
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_ASSIGN_NB;
FILE_NAME(stmt_cur_, net);
stmt_cur_->u_.assign_.delay = 0;
stmt_cur_->u_.assign_.count = 0;
stmt_cur_->u_.assign_.nevent = 0;
/* Make the lval fields. */
make_assign_lvals_(net);
/* Make the rval field. */
assert(expr_ == 0);
net->rval()->expr_scan(this);
stmt_cur_->u_.assign_.rval_ = expr_;
expr_ = 0;
/* Process a delay if it exists. */
if (const NetEConst*delay_num = dynamic_cast<const NetEConst*>(delay_exp)) {
verinum val = delay_num->value();
ivl_expr_t de = new struct ivl_expr_s;
de->type_ = IVL_EX_DELAY;
de->width_ = 8 * sizeof(uint64_t);
de->signed_ = 0;
de->u_.delay_.value = val.as_ulong64();
stmt_cur_->u_.assign_.delay = de;
} else if (delay_exp != 0) {
delay_exp->expr_scan(this);
stmt_cur_->u_.assign_.delay = expr_;
expr_ = 0;
}
/* Process a count if it exists. */
if (const NetEConst*cnt_num = dynamic_cast<const NetEConst*>(cnt_exp)) {
verinum val = cnt_num->value();
ivl_expr_t cnt = new struct ivl_expr_s;
cnt->type_ = IVL_EX_ULONG;
cnt->width_ = 8 * sizeof(unsigned long);
cnt->signed_ = 0;
cnt->u_.ulong_.value = val.as_ulong();
stmt_cur_->u_.assign_.count = cnt;
} else if (cnt_exp != 0) {
cnt_exp->expr_scan(this);
stmt_cur_->u_.assign_.count = expr_;
expr_ = 0;
}
/* Process the events if they exist. This is a copy of code
* from NetEvWait below. */
if (net->nevents() > 0) {
stmt_cur_->u_.assign_.nevent = net->nevents();
if (net->nevents() > 1) {
stmt_cur_->u_.assign_.events = (ivl_event_t*)
calloc(net->nevents(), sizeof(ivl_event_t*));
}
for (unsigned edx = 0 ; edx < net->nevents() ; edx += 1) {
/* Locate the event by name. Save the ivl_event_t in the
statement so that the generator can find it easily. */
const NetEvent*ev = net->event(edx);
ivl_scope_t ev_scope = lookup_scope_(ev->scope());
ivl_event_t ev_tmp=0;
assert(ev_scope);
assert(ev_scope->nevent_ > 0);
for (unsigned idx = 0; idx < ev_scope->nevent_; idx += 1) {
const char*ename =
ivl_event_basename(ev_scope->event_[idx]);
if (strcmp(ev->name(), ename) == 0) {
ev_tmp = ev_scope->event_[idx];
break;
}
}
// XXX should we assert(ev_tmp)?
if (net->nevents() == 1)
stmt_cur_->u_.assign_.event = ev_tmp;
else
stmt_cur_->u_.assign_.events[edx] = ev_tmp;
/* If this is an event with a probe, then connect up the
pins. This wasn't done during the ::event method because
the signals weren't scanned yet. */
if (ev->nprobe() >= 1) {
unsigned iany = 0;
unsigned ineg = ev_tmp->nany;
unsigned ipos = ineg + ev_tmp->nneg;
unsigned iedg = ipos + ev_tmp->npos;
for (unsigned idx = 0; idx < ev->nprobe(); idx += 1) {
const NetEvProbe*pr = ev->probe(idx);
unsigned base = 0;
switch (pr->edge()) {
case NetEvProbe::ANYEDGE:
base = iany;
iany += pr->pin_count();
break;
case NetEvProbe::NEGEDGE:
base = ineg;
ineg += pr->pin_count();
break;
case NetEvProbe::POSEDGE:
base = ipos;
ipos += pr->pin_count();
break;
case NetEvProbe::EDGE:
base = iedg;
iedg += pr->pin_count();
break;
}
for (unsigned bit = 0; bit < pr->pin_count();
bit += 1) {
ivl_nexus_t nex = (ivl_nexus_t)
pr->pin(bit).nexus()->t_cookie();
assert(nex);
ev_tmp->pins[base+bit] = nex;
}
}
}
}
}
}
bool dll_target::proc_block(const NetBlock*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
/* First, count the statements in the block. */
unsigned count = 0;
for (const NetProc*cur = net->proc_first()
; cur ; cur = net->proc_next(cur))
count += 1;
/* If the block has no statements, then turn it into a no-op */
if (count == 0) {
stmt_cur_->type_ = IVL_ST_NOOP;
return true;
}
/* If there is exactly one statement and the block is not a
fork/join_none, there is no need for the block wrapper,
generate the contained statement instead. */
if ((count == 1) && (net->subscope() == 0) &&
(net->type() != NetBlock::PARA_JOIN_NONE)) {
return net->proc_first()->emit_proc(this);
}
/* Handle the general case. The block has some statements in
it, so fill in the block fields of the existing statement,
and generate the contents for the statement array. */
switch (net->type()) {
case NetBlock::SEQU:
stmt_cur_->type_ = IVL_ST_BLOCK;
break;
case NetBlock::PARA:
stmt_cur_->type_ = IVL_ST_FORK;
break;
case NetBlock::PARA_JOIN_ANY:
stmt_cur_->type_ = IVL_ST_FORK_JOIN_ANY;
break;
case NetBlock::PARA_JOIN_NONE:
stmt_cur_->type_ = IVL_ST_FORK_JOIN_NONE;
break;
}
stmt_cur_->u_.block_.nstmt_ = count;
stmt_cur_->u_.block_.stmt_ = (struct ivl_statement_s*)
calloc(count, sizeof(struct ivl_statement_s));
if (net->subscope())
stmt_cur_->u_.block_.scope = lookup_scope_(net->subscope());
else
stmt_cur_->u_.block_.scope = 0;
struct ivl_statement_s*save_cur_ = stmt_cur_;
unsigned idx = 0;
bool flag = true;
for (const NetProc*cur = net->proc_first()
; cur ; cur = net->proc_next(cur), idx += 1) {
assert(idx < count);
stmt_cur_ = save_cur_->u_.block_.stmt_ + idx;
bool rc = cur->emit_proc(this);
flag = flag && rc;
}
assert(idx == count);
stmt_cur_ = save_cur_;
return flag;
}
bool dll_target::proc_break(const NetBreak*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_BREAK;
return true;
}
/*
* A. case statement is in turn an array of statements with gate
* expressions. This builds arrays of the right size and builds the
* ivl_expr_t and ivl_statement_s arrays for the substatements.
*/
void dll_target::proc_case(const NetCase*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
switch (net->type()) {
case NetCase::EQ:
stmt_cur_->type_ = IVL_ST_CASE;
break;
case NetCase::EQX:
stmt_cur_->type_ = IVL_ST_CASEX;
break;
case NetCase::EQZ:
stmt_cur_->type_ = IVL_ST_CASEZ;
break;
}
assert(stmt_cur_->type_ != IVL_ST_NONE);
stmt_cur_->u_.case_.quality = net->case_quality();
assert(expr_ == 0);
assert(net->expr());
net->expr()->expr_scan(this);
stmt_cur_->u_.case_.cond = expr_;
expr_ = 0;
/* If the condition expression is a real valued expression,
then change the case statement to a CASER statement. */
if (stmt_cur_->u_.case_.cond->value_ == IVL_VT_REAL)
stmt_cur_->type_ = IVL_ST_CASER;
unsigned ncase = net->nitems();
stmt_cur_->u_.case_.ncase = ncase;
stmt_cur_->u_.case_.case_ex = new ivl_expr_t[ncase];
stmt_cur_->u_.case_.case_st = new struct ivl_statement_s[ncase];
ivl_statement_t save_cur = stmt_cur_;
for (unsigned idx = 0 ; idx < ncase ; idx += 1) {
const NetExpr*ex = net->expr(idx);
if (ex) {
ex->expr_scan(this);
save_cur->u_.case_.case_ex[idx] = expr_;
expr_ = 0;
} else {
save_cur->u_.case_.case_ex[idx] = 0;
}
stmt_cur_ = save_cur->u_.case_.case_st + idx;
stmt_cur_->type_ = IVL_ST_NONE;
if (net->stat(idx) == 0) {
stmt_cur_->type_ = IVL_ST_NOOP;
} else {
net->stat(idx)->emit_proc(this);
}
}
stmt_cur_ = save_cur;
}
bool dll_target::proc_cassign(const NetCAssign*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_CASSIGN;
/* Make the l-value fields. */
make_assign_lvals_(net);
assert(expr_ == 0);
net->rval()->expr_scan(this);
stmt_cur_->u_.assign_.rval_ = expr_;
expr_ = 0;
return true;
}
bool dll_target::proc_condit(const NetCondit*net)
{
bool rc_flag = true;
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_CONDIT;
stmt_cur_->u_.condit_.stmt_ = (struct ivl_statement_s*)
calloc(2, sizeof(struct ivl_statement_s));
assert(expr_ == 0);
net->expr()->expr_scan(this);
stmt_cur_->u_.condit_.cond_ = expr_;
if (expr_ == 0)
rc_flag = false;
expr_ = 0;
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = save_cur_->u_.condit_.stmt_+0;
rc_flag = net->emit_recurse_if(this) && rc_flag;
stmt_cur_ = save_cur_->u_.condit_.stmt_+1;
rc_flag = net->emit_recurse_else(this) && rc_flag;
stmt_cur_ = save_cur_;
return rc_flag;
}
bool dll_target::proc_continue(const NetContinue*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_CONTINUE;
return true;
}
bool dll_target::proc_deassign(const NetDeassign*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_DEASSIGN;
/* Make the l-value fields. */
make_assign_lvals_(net);
return true;
}
bool dll_target::proc_delay(const NetPDelay*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
ivl_statement_t tmp = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
if (const NetExpr*expr = net->expr()) {
stmt_cur_->type_ = IVL_ST_DELAYX;
assert(expr_ == 0);
expr->expr_scan(this);
stmt_cur_->u_.delayx_.expr = expr_;
expr_ = 0;
stmt_cur_->u_.delayx_.stmt_ = tmp;
} else {
stmt_cur_->type_ = IVL_ST_DELAY;
stmt_cur_->u_.delay_.stmt_ = tmp;
stmt_cur_->u_.delay_.value = net->delay();
}
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = tmp;
bool flag = net->emit_proc_recurse(this);
/* If the recurse doesn't turn this new item into something,
then either it failed or there is no statement
there. Either way, draw a no-op into the statement. */
if (stmt_cur_->type_ == IVL_ST_NONE) {
stmt_cur_->type_ = IVL_ST_NOOP;
}
stmt_cur_ = save_cur_;
return flag;
}
bool dll_target::proc_disable(const NetDisable*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_DISABLE;
stmt_cur_->u_.disable_.flow_control = net->flow_control();
const NetScope* dis_scope = net->target();
/* A normal disable. */
if (dis_scope) stmt_cur_->u_.disable_.scope = lookup_scope_(dis_scope);
/* A SystemVerilog disable fork. */
else stmt_cur_->u_.disable_.scope = 0;
return true;
}
void dll_target::proc_do_while(const NetDoWhile*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_DO_WHILE;
stmt_cur_->u_.while_.stmt_ = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
assert(expr_ == 0);
net->expr()->expr_scan(this);
stmt_cur_->u_.while_.cond_ = expr_;
expr_ = 0;
/* Now generate the statement of the do/while loop. We know it is
a single statement, and we know that the
emit_proc_recurse() will call emit_proc() for it. */
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = save_cur_->u_.while_.stmt_;
net->emit_proc_recurse(this);
stmt_cur_ = save_cur_;
}
bool dll_target::proc_force(const NetForce*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_FORCE;
/* Make the l-value fields. */
make_assign_lvals_(net);
assert(expr_ == 0);
net->rval()->expr_scan(this);
stmt_cur_->u_.assign_.rval_ = expr_;
expr_ = 0;
return true;
}
void dll_target::proc_forever(const NetForever*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_FOREVER;
ivl_statement_t tmp = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = tmp;
net->emit_recurse(this);
save_cur_->u_.forever_.stmt_ = stmt_cur_;
stmt_cur_ = save_cur_;
}
bool dll_target::proc_forloop(const NetForLoop*net)
{
ivl_statement_t tmp;
bool rc, res=true;
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_FORLOOP;
ivl_statement_t save_cur_ = stmt_cur_;
// Note that the init statement is optional. If it is not present,
// then the emit_recurse_init will not generate a statement.
tmp = (struct ivl_statement_s*)calloc(1, sizeof(struct ivl_statement_s));
stmt_cur_ = tmp;
rc = net->emit_recurse_init(this);
if (stmt_cur_->type_ != IVL_ST_NONE)
save_cur_->u_.forloop_.init_stmt = stmt_cur_;
else {
free(tmp);
save_cur_->u_.forloop_.init_stmt = nullptr;
}
res = res && rc;
tmp = (struct ivl_statement_s*)calloc(1, sizeof(struct ivl_statement_s));
stmt_cur_ = tmp;
rc = net->emit_recurse_stmt(this);
save_cur_->u_.forloop_.stmt = stmt_cur_;
res = res && rc;
tmp = (struct ivl_statement_s*)calloc(1, sizeof(struct ivl_statement_s));
stmt_cur_ = tmp;
rc = net->emit_recurse_step(this);
if (stmt_cur_->type_ != IVL_ST_NONE)
save_cur_->u_.forloop_.step = stmt_cur_;
else {
free(tmp);
save_cur_->u_.forloop_.step = nullptr;
}
res = res && rc;
assert(expr_ == nullptr);
rc = net->emit_recurse_condition(this);
save_cur_->u_.forloop_.condition = expr_;
expr_ = nullptr;
res = res && rc;
stmt_cur_ = save_cur_;
return res;
}
void dll_target::proc_free(const NetFree*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_FREE;
stmt_cur_->u_.free_.scope = lookup_scope_(net->scope());
}
bool dll_target::proc_release(const NetRelease*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_RELEASE;
/* Make the l-value fields. */
make_assign_lvals_(net);
return true;
}
void dll_target::proc_repeat(const NetRepeat*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_REPEAT;
assert(expr_ == 0);
net->expr()->expr_scan(this);
stmt_cur_->u_.while_.cond_ = expr_;
expr_ = 0;
ivl_statement_t tmp = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = tmp;
net->emit_recurse(this);
save_cur_->u_.while_.stmt_ = stmt_cur_;
stmt_cur_ = save_cur_;
}
void dll_target::proc_stask(const NetSTask*net)
{
unsigned nparms = net->nparms();
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_STASK;
/* System task names are lex_strings strings. */
stmt_cur_->u_.stask_.name_ = net->name();
stmt_cur_->u_.stask_.sfunc_as_task_ = net->sfunc_as_task();
stmt_cur_->u_.stask_.nparm_= nparms;
stmt_cur_->u_.stask_.parms_= (ivl_expr_t*)
calloc(nparms, sizeof(ivl_expr_t));
for (unsigned idx = 0 ; idx < nparms ; idx += 1) {
if (net->parm(idx))
net->parm(idx)->expr_scan(this);
stmt_cur_->u_.stask_.parms_[idx] = expr_;
expr_ = 0;
}
}
bool dll_target::proc_trigger(const NetEvTrig*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_TRIGGER;
stmt_cur_->u_.wait_.nevent = 1;
/* Locate the event by name. Save the ivl_event_t in the
statement so that the generator can find it easily. */
const NetEvent*ev = net->event();
ivl_scope_t ev_scope = lookup_scope_(ev->scope());
for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) {
const char*ename = ivl_event_basename(ev_scope->event_[idx]);
if (strcmp(ev->name(), ename) == 0) {
stmt_cur_->u_.wait_.event = ev_scope->event_[idx];
break;
}
}
return true;
}
bool dll_target::proc_nb_trigger(const NetEvNBTrig*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_NB_TRIGGER;
stmt_cur_->u_.wait_.nevent = 1;
stmt_cur_->u_.wait_.delay = 0;
if (const NetExpr*expr = net->delay()) {
assert(expr_ == 0);
expr->expr_scan(this);
stmt_cur_->u_.wait_.delay = expr_;
expr_ = 0;
}
/* Locate the event by name. Save the ivl_event_t in the
statement so that the generator can find it easily. */
const NetEvent*ev = net->event();
ivl_scope_t ev_scope = lookup_scope_(ev->scope());
for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) {
const char*ename = ivl_event_basename(ev_scope->event_[idx]);
if (strcmp(ev->name(), ename) == 0) {
stmt_cur_->u_.wait_.event = ev_scope->event_[idx];
break;
}
}
return true;
}
void dll_target::proc_utask(const NetUTask*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_UTASK;
stmt_cur_->u_.utask_.def = lookup_scope_(net->task());
}
bool dll_target::proc_wait(const NetEvWait*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_WAIT;
stmt_cur_->u_.wait_.stmt_ = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
stmt_cur_->u_.wait_.nevent = net->nevents();
/* This is a wait fork statement. */
if ((net->nevents() == 1) && (net->event(0) == 0)) {
stmt_cur_->u_.wait_.needs_t0_trigger = 0;
stmt_cur_->u_.wait_.event = 0;
stmt_cur_->type_ = IVL_ST_WAIT;
stmt_cur_->u_.wait_.stmt_->type_ = IVL_ST_NOOP;
return true;
}
stmt_cur_->u_.wait_.needs_t0_trigger = net->has_t0_trigger();
// This event processing code is also in the NB assign above.
if (net->nevents() > 1) {
stmt_cur_->u_.wait_.events = (ivl_event_t*)
calloc(net->nevents(), sizeof(ivl_event_t*));
}
for (unsigned edx = 0 ; edx < net->nevents() ; edx += 1) {
/* Locate the event by name. Save the ivl_event_t in the
statement so that the generator can find it easily. */
const NetEvent*ev = net->event(edx);
ivl_scope_t ev_scope = lookup_scope_(ev->scope());
ivl_event_t ev_tmp=0;
assert(ev_scope);
assert(ev_scope->nevent_ > 0);
for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) {
const char*ename = ivl_event_basename(ev_scope->event_[idx]);
if (strcmp(ev->name(), ename) == 0) {
ev_tmp = ev_scope->event_[idx];
break;
}
}
// XXX should we assert(ev_tmp)?
if (net->nevents() == 1)
stmt_cur_->u_.wait_.event = ev_tmp;
else
stmt_cur_->u_.wait_.events[edx] = ev_tmp;
/* If this is an event with a probe, then connect up the
pins. This wasn't done during the ::event method because
the signals weren't scanned yet. */
if (ev->nprobe() >= 1) {
unsigned iany = 0;
unsigned ineg = ev_tmp->nany;
unsigned ipos = ineg + ev_tmp->nneg;
unsigned iedg = ipos + ev_tmp->npos;
for (unsigned idx = 0 ; idx < ev->nprobe() ; idx += 1) {
const NetEvProbe*pr = ev->probe(idx);
unsigned base = 0;
switch (pr->edge()) {
case NetEvProbe::ANYEDGE:
base = iany;
iany += pr->pin_count();
break;
case NetEvProbe::NEGEDGE:
base = ineg;
ineg += pr->pin_count();
break;
case NetEvProbe::POSEDGE:
base = ipos;
ipos += pr->pin_count();
break;
case NetEvProbe::EDGE:
base = iedg;
iedg += pr->pin_count();
break;
}
for (unsigned bit = 0; bit < pr->pin_count(); bit += 1) {
ivl_nexus_t nex = (ivl_nexus_t)
pr->pin(bit).nexus()->t_cookie();
ivl_assert(*ev, nex);
ev_tmp->pins[base+bit] = nex;
}
}
}
}
/* The ivl_statement_t for the wait statement is not complete
until we calculate the sub-statement. */
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = stmt_cur_->u_.wait_.stmt_;
bool flag = net->emit_recurse(this);
if (flag && (stmt_cur_->type_ == IVL_ST_NONE))
stmt_cur_->type_ = IVL_ST_NOOP;
stmt_cur_ = save_cur_;
return flag;
}
void dll_target::proc_while(const NetWhile*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
FILE_NAME(stmt_cur_, net);
stmt_cur_->type_ = IVL_ST_WHILE;
stmt_cur_->u_.while_.stmt_ = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
assert(expr_ == 0);
net->expr()->expr_scan(this);
stmt_cur_->u_.while_.cond_ = expr_;
expr_ = 0;
/* Now generate the statement of the while loop. We know it is
a single statement, and we know that the
emit_proc_recurse() will call emit_proc() for it. */
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = save_cur_->u_.while_.stmt_;
net->emit_proc_recurse(this);
stmt_cur_ = save_cur_;
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化