加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
talib.py 9.63 KB
一键复制 编辑 原始数据 按行查看 历史
云金杞 提交于 2022-12-02 09:48 . 更新backtrader的注释
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2020 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
# The modules below should/must define __all__ with the objects wishes
# or prepend an "_" (underscore) to private classes/variables
import sys
import backtrader as bt
from backtrader.utils.py3 import with_metaclass
# 如果import talib正常,运行else下面的代码,否则,运行except下面的代码
try:
import talib
except ImportError:
__all__ = [] # talib is not available
else:
import numpy as np # talib dependency
import talib.abstract
# MA_Type
MA_Type = talib.MA_Type
# Reverse TA_FUNC_FLAGS dict
# 把TA_FUNC_FLAGS字典进行反转
R_TA_FUNC_FLAGS = dict(
zip(talib.abstract.TA_FUNC_FLAGS.values(),
talib.abstract.TA_FUNC_FLAGS.keys()))
FUNC_FLAGS_SAMESCALE = 16777216
FUNC_FLAGS_UNSTABLE = 134217728
FUNC_FLAGS_CANDLESTICK = 268435456
# 把TA_OUTPUT_FLAGS字典进行反转
R_TA_OUTPUT_FLAGS = dict(
zip(talib.abstract.TA_OUTPUT_FLAGS.values(),
talib.abstract.TA_OUTPUT_FLAGS.keys()))
OUT_FLAGS_LINE = 1
OUT_FLAGS_DOTTED = 2
OUT_FLAGS_DASH = 4
OUT_FLAGS_HISTO = 16
OUT_FLAGS_UPPER = 2048
OUT_FLAGS_LOWER = 4096
# Generate all indicators as subclasses
# talib指标元类
class _MetaTALibIndicator(bt.Indicator.__class__):
# 名字
_refname = '_taindcol'
# 指标列
_taindcol = dict()
_KNOWN_UNSTABLE = ['SAR']
# postinit
def dopostinit(cls, _obj, *args, **kwargs):
# Go to parent
# todo 省略了res,结果一样,表达更简洁
_obj, args, kwargs = super(_MetaTALibIndicator, cls).dopostinit(_obj, *args, **kwargs)
# res = super(_MetaTALibIndicator, cls).dopostinit(_obj,
# *args, **kwargs)
# _obj, args, kwargs = res
# Get the minimum period by using the abstract interface and params
# 通过抽象的接口和参数,获取需要的最小周期
_obj._tabstract.set_function_args(**_obj.p._getkwargs())
_obj._lookback = lookback = _obj._tabstract.lookback + 1
_obj.updateminperiod(lookback)
if _obj._unstable:
_obj._lookback = 0
elif cls.__name__ in cls._KNOWN_UNSTABLE:
_obj._lookback = 0
# findowner用于发现_obj的父类,但是是bt.Cerebro的实例
cerebro = bt.metabase.findowner(_obj, bt.Cerebro)
tafuncinfo = _obj._tabstract.info
_obj._tafunc = getattr(talib, tafuncinfo['name'], None)
return _obj, args, kwargs # return the object and args
# talib指标类
class _TALibIndicator(with_metaclass(_MetaTALibIndicator, bt.Indicator)):
CANDLEOVER = 1.02 # 2% over
CANDLEREF = 1 # Open, High, Low, Close (0, 1, 2, 3)
# 类方法
@classmethod
def _subclass(cls, name):
# Module where the class has to end (namely this one)
# 类模块
clsmodule = sys.modules[cls.__module__]
# Create an abstract interface to get lines names
# 通过抽象接口获取line的名字
_tabstract = talib.abstract.Function(name)
# Variables about the info learnt from func_flags
iscandle = False
unstable = False
# Prepare plotinfo
# 准备画图信息
plotinfo = dict()
fflags = _tabstract.function_flags or []
for fflag in fflags:
rfflag = R_TA_FUNC_FLAGS[fflag]
if rfflag == FUNC_FLAGS_SAMESCALE:
plotinfo['subplot'] = False
elif rfflag == FUNC_FLAGS_UNSTABLE:
unstable = True
elif rfflag == FUNC_FLAGS_CANDLESTICK:
plotinfo['subplot'] = False
plotinfo['plotlinelabels'] = True
iscandle = True
# Prepare plotlines
# 准备画图的line
lines = _tabstract.output_names
output_flags = _tabstract.output_flags
plotlines = dict()
samecolor = False
for lname in lines:
oflags = output_flags.get(lname, None)
pline = dict()
for oflag in oflags or []:
orflag = R_TA_OUTPUT_FLAGS[oflag]
if orflag & OUT_FLAGS_LINE:
if not iscandle:
pline['ls'] = '-'
else:
pline['_plotskip'] = True # do not plot candles
elif orflag & OUT_FLAGS_DASH:
pline['ls'] = '--'
elif orflag & OUT_FLAGS_DOTTED:
pline['ls'] = ':'
elif orflag & OUT_FLAGS_HISTO:
pline['_method'] = 'bar'
if samecolor:
pline['_samecolor'] = True
if orflag & OUT_FLAGS_LOWER:
samecolor = False
elif orflag & OUT_FLAGS_UPPER:
samecolor = True # last: other values in loop are seen
if pline: # the dict has something
plotlines[lname] = pline
# 如果是K线
if iscandle:
# This is the line that will be plotted when the output of the
# indicator is a candle. The values of a candle (100) will be
# used to plot a sign above the maximum of the bar which
# produces the candle
pline = dict()
pline['_name'] = name # plotted name
lname = '_candleplot' # change name
lines.append(lname)
pline['ls'] = ''
pline['marker'] = 'd'
pline['markersize'] = '7.0'
pline['fillstyle'] = 'full'
plotlines[lname] = pline
# Prepare dictionary for subclassing
# 准备创建子类的字典
clsdict = {
'__module__': cls.__module__,
'__doc__': str(_tabstract),
'_tabstract': _tabstract, # keep ref for lookback calcs
'_iscandle': iscandle,
'_unstable': unstable,
'params': _tabstract.get_parameters(),
'lines': tuple(lines),
'plotinfo': plotinfo,
'plotlines': plotlines,
}
newcls = type(str(name), (cls,), clsdict) # subclass
setattr(clsmodule, str(name), newcls) # add to module
# oncestart
def oncestart(self, start, end):
pass # if not ... a call with a single value to once will happen
# 运行一次
def once(self, start, end):
import array
# prepare the data arrays - single shot
narrays = [np.array(x.lines[0].array) for x in self.datas]
# Execute
output = self._tafunc(*narrays, **self.p._getkwargs())
fsize = self.size()
lsize = fsize - self._iscandle
if lsize == 1: # only 1 output, no tuple returned
self.lines[0].array = array.array(str('d'), output)
if fsize > lsize: # candle is present
candleref = narrays[self.CANDLEREF] * self.CANDLEOVER
output2 = candleref * (output / 100.0)
self.lines[1].array = array.array(str('d'), output2)
else:
for i, o in enumerate(output):
self.lines[i].array = array.array(str('d'), o)
# 每个bar运行
def next(self):
# prepare the data arrays - single shot
size = self._lookback or len(self)
narrays = [np.array(x.lines[0].get(size=size)) for x in self.datas]
out = self._tafunc(*narrays, **self.p._getkwargs())
fsize = self.size()
lsize = fsize - self._iscandle
if lsize == 1: # only 1 output, no tuple returned
self.lines[0][0] = o = out[-1]
if fsize > lsize: # candle is present
candleref = narrays[self.CANDLEREF][-1] * self.CANDLEOVER
o2 = candleref * (o / 100.0)
self.lines[1][0] = o2
else:
for i, o in enumerate(out):
self.lines[i][0] = o[-1]
# When importing the module do an automatic declaration of thed
tafunctions = talib.get_functions()
for tafunc in tafunctions:
_TALibIndicator._subclass(tafunc)
__all__ = tafunctions + ['MA_Type', '_TALibIndicator']
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化