代码拉取完成,页面将自动刷新
#include "yolo.h"
Yolo::Yolo(void)
{
isBusy = false;
weightPath = nullptr;
}
Yolo::~Yolo()
{
infer_request.cancel();
pthread_mutex_lock(&yoloMutex);
ov::shutdown();
if(weightPath)
{
free(weightPath);
}
pthread_mutex_unlock(&yoloMutex);
}
bool Yolo::Init(char *weight)
{
bool bret = false;
model = core.read_model(weight);
compiled_model = core.compile_model(model, "AUTO");
infer_request = compiled_model.create_infer_request();
input_tensor = infer_request.get_input_tensor();
tensor_shape = input_tensor.get_shape();
inChannel = tensor_shape[1];
inHeight = tensor_shape[2];
inWidth = tensor_shape[3];
bret = true;
pthread_mutex_init(&yoloMutex, NULL);
weightPath = (char *)malloc(strlen(weight) + 1);
if(weightPath)
{
strcpy(weightPath, weight);
}
return bret;
}
unsigned long long Yolo::getTimeStamps(void)
{
struct timeval tv;
unsigned long long timeStamps = 0;
gettimeofday(&tv, NULL);
timeStamps = tv.tv_sec * 1000 + tv.tv_usec / 1000.0;
return timeStamps;
}
bool Yolo::checkTimeout(void)
{
bool bret = false;
if(!isBusy)
{
return bret;
}
unsigned long long times = getTimeStamps();
if(times - detTimeStamps > TIMEOUT_MS)
{
bret = true;
printf("timeout!!!!\r\n");
try
{
infer_request.cancel();
}
catch(...)
{
printf("into catch1\r\n");
}
}
return bret;
}
bool Yolo::changeWeight(char *weight)
{
bool bret = false;
pthread_mutex_lock(&yoloMutex);
ov::shutdown();
this->Init(weight);
if(weightPath)
{
free(weightPath);
}
weightPath = (char *)malloc(strlen(weight) + 1);
if(weightPath)
{
strcpy(weightPath, weight);
}
pthread_mutex_unlock(&yoloMutex);
return bret;
}
std::vector<YoloBox> Yolo::Detect(cv::Mat &img, float thresh, const std::chrono::milliseconds timeout)
{
std::vector<YoloBox> yoloBoxes;
bool isDetOk = false;
pthread_mutex_lock(&yoloMutex);
std::vector<float> paddings(3); //scale, half_h, half_w
std::vector<int> new_shape = {inWidth, inHeight};
cv::Mat resized_img = Letterbox(img, paddings, new_shape); //resize to (640,640) by Letterbox
// BGR->RGB, u8(0-255)->f32(0.0-1.0), HWC->NCHW
cv::Mat blob = cv::dnn::blobFromImage(resized_img, 1 / 255.0, cv::Size(inWidth, inHeight), cv::Scalar(0, 0, 0), true);
// -------- Step 5. Feed the blob into the input node of YOLOv5 -------
// Get input port for model with one input
auto input_port = compiled_model.input();
// Create tensor from external memory
ov::Tensor input_tensor(input_port.get_element_type(), input_port.get_shape(), blob.ptr(0));
// Set input tensor for model with one input
try
{
infer_request.set_input_tensor(input_tensor);
infer_request.start_async();
isDetOk = infer_request.wait_for(timeout);
}
catch(...)
{
printf("into catch2\r\n");
}
if(!isDetOk)
{
// infer_request.cancel();
printf("det timeout!!\r\n");
ov::shutdown();
if(weightPath)
{
this->Init(weightPath);
}
pthread_mutex_unlock(&yoloMutex);
return yoloBoxes;
}
auto output_tensor = infer_request.get_output_tensor();
float* detection = (float*)output_tensor.data();
auto output_shape = output_tensor.get_shape();
int rows = output_shape[1];
//1, 9, 3024
// printf("%d, %d, %d\r\n", output_shape[0], output_shape[1], output_shape[2]);
float conf_threshold = thresh;
float nms_threshold = 0.5;
std::vector<cv::Rect> rectBoxes;
std::vector<int> class_ids;
std::vector<float> class_scores;
std::vector<float> confidences;
for(int i=0;i<output_shape[2];i++)
{
int maxClassIndex = -1;
float maxScore = 0.0;
for(int j=4;j<output_shape[1];j++)
{
if(*(detection+j*output_shape[2]+i) > maxScore)
{
maxScore = *(detection+j*output_shape[2]+i);
maxClassIndex = j;
}
}
if(maxScore >= thresh)
{
int id = maxClassIndex - 4;
float cx = *(detection+0*output_shape[2]+i);
float cy = *(detection+1*output_shape[2]+i);
float w = *(detection+2*output_shape[2]+i);
float h = *(detection+3*output_shape[2]+i);
int left = static_cast<int>((cx - 0.5 * w - paddings[2]) / paddings[0]);
int top = static_cast<int>((cy - 0.5 * h - paddings[1]) / paddings[0]);
int width = static_cast<int>(w / paddings[0]);
int height = static_cast<int>(h / paddings[0]);
cv::Rect rectBox;
rectBox.x = left;
rectBox.y = top;
rectBox.width = width;
rectBox.height = height;
rectBoxes.push_back(rectBox);
confidences.push_back(maxScore);
class_ids.push_back(id);
}
}
std::vector<int> indices;
cv::dnn::NMSBoxes(rectBoxes, confidences, conf_threshold, nms_threshold, indices);
for (size_t i = 0; i < indices.size(); i++)
{
YoloBox yoloBox;
int index = indices[i];
yoloBox.id = class_ids[index];
yoloBox.x = rectBoxes[index].x;
yoloBox.y = rectBoxes[index].y;
yoloBox.w = rectBoxes[index].width;
yoloBox.h = rectBoxes[index].height;
yoloBox.prob = confidences[index];
yoloBoxes.push_back(yoloBox);
}
pthread_mutex_unlock(&yoloMutex);
return yoloBoxes;
}
std::vector<YoloBox> Yolo::DetectWithTimeOutMs(cv::Mat &img, unsigned int ms)
{
return Detect(img, 0.25, std::chrono::milliseconds(ms));
}
std::vector<YoloBox> Yolo::Detect(cv::Mat &img, float thresh)
{
std::vector<YoloBox> yoloBoxes;
isBusy = true;
// printf("%d, %d\r\n", inWidth, inHeight);
detTimeStamps = getTimeStamps();
pthread_mutex_lock(&yoloMutex);
std::vector<float> paddings(3); //scale, half_h, half_w
std::vector<int> new_shape = {inWidth, inHeight};
cv::Mat resized_img = Letterbox(img, paddings, new_shape); //resize to (640,640) by Letterbox
// BGR->RGB, u8(0-255)->f32(0.0-1.0), HWC->NCHW
cv::Mat blob = cv::dnn::blobFromImage(resized_img, 1 / 255.0, cv::Size(inWidth, inHeight), cv::Scalar(0, 0, 0), true);
// -------- Step 5. Feed the blob into the input node of YOLOv5 -------
// Get input port for model with one input
auto input_port = compiled_model.input();
// Create tensor from external memory
ov::Tensor input_tensor(input_port.get_element_type(), input_port.get_shape(), blob.ptr(0));
// Set input tensor for model with one input
try
{
infer_request.set_input_tensor(input_tensor);
infer_request.infer();
}
catch(...)
{
printf("into catch2\r\n");
}
auto output_tensor = infer_request.get_output_tensor();
float* detection = (float*)output_tensor.data();
auto output_shape = output_tensor.get_shape();
int rows = output_shape[1];
//1, 9, 3024
// printf("%d, %d, %d\r\n", output_shape[0], output_shape[1], output_shape[2]);
float conf_threshold = thresh;
float nms_threshold = 0.5;
std::vector<cv::Rect> rectBoxes;
std::vector<int> class_ids;
std::vector<float> class_scores;
std::vector<float> confidences;
for(int i=0;i<output_shape[2];i++)
{
int maxClassIndex = -1;
float maxScore = 0.0;
for(int j=4;j<output_shape[1];j++)
{
if(*(detection+j*output_shape[2]+i) > maxScore)
{
maxScore = *(detection+j*output_shape[2]+i);
maxClassIndex = j;
}
}
if(maxScore >= thresh)
{
int id = maxClassIndex - 4;
float cx = *(detection+0*output_shape[2]+i);
float cy = *(detection+1*output_shape[2]+i);
float w = *(detection+2*output_shape[2]+i);
float h = *(detection+3*output_shape[2]+i);
int left = static_cast<int>((cx - 0.5 * w - paddings[2]) / paddings[0]);
int top = static_cast<int>((cy - 0.5 * h - paddings[1]) / paddings[0]);
int width = static_cast<int>(w / paddings[0]);
int height = static_cast<int>(h / paddings[0]);
cv::Rect rectBox;
rectBox.x = left;
rectBox.y = top;
rectBox.width = width;
rectBox.height = height;
rectBoxes.push_back(rectBox);
confidences.push_back(maxScore);
class_ids.push_back(id);
}
}
std::vector<int> indices;
cv::dnn::NMSBoxes(rectBoxes, confidences, conf_threshold, nms_threshold, indices);
for (size_t i = 0; i < indices.size(); i++)
{
YoloBox yoloBox;
int index = indices[i];
yoloBox.id = class_ids[index];
yoloBox.x = rectBoxes[index].x;
yoloBox.y = rectBoxes[index].y;
yoloBox.w = rectBoxes[index].width;
yoloBox.h = rectBoxes[index].height;
yoloBox.prob = confidences[index];
yoloBoxes.push_back(yoloBox);
}
pthread_mutex_unlock(&yoloMutex);
isBusy = false;
return yoloBoxes;
}
std::vector<YoloBox> Yolo::Detect(cv::Mat &img)
{
return Detect(img, 0.25);
}
cv::Mat Yolo::Letterbox(cv::Mat& img, std::vector<float>& paddings, std::vector<int> new_shape)
{
int img_h = img.rows;
int img_w = img.cols;
// Compute scale ratio(new / old) and target resized shape
float scale = std::min(new_shape[1] * 1.0 / img_h, new_shape[0] * 1.0 / img_w);
int resize_h = int(round(img_h * scale));
int resize_w = int(round(img_w * scale));
paddings[0] = scale;
// Compute padding
int pad_h = new_shape[1] - resize_h;
int pad_w = new_shape[0] - resize_w;
// Resize and pad image while meeting stride-multiple constraints
cv::Mat resized_img;
cv::resize(img, resized_img, cv::Size(resize_w, resize_h));
// divide padding into 2 sides
float half_h = pad_h * 1.0 / 2;
float half_w = pad_w * 1.0 / 2;
paddings[1] = half_h;
paddings[2] = half_w;
// Compute padding boarder
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
// Add border
cv::copyMakeBorder(resized_img, resized_img, top, bottom, left, right, 0, cv::Scalar(114, 114, 114));
return resized_img;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。