代码拉取完成,页面将自动刷新
同步操作将从 程序源码设计/Python_FatigueDrivingDetection 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os,sys
import tensorflow as tf
import random
tf.app.flags.DEFINE_string(
'dataset_dir', 'data',
'The directory where the output TFRecords and temporary files are saved.')
FLAGS = tf.app.flags.FLAGS
_IMAGE_SIZE = None #Note!-not use,just show
_NUM_CHANNELS = None #Note!-not use,just show
# The number of images in the training set. Note!-not use,just show
_NUM_TRAIN_SAMPLES = None
# The number of images to be kept from the training set for the validation set.
_NUM_VALIDATION = 0
# The number of images in the test set. Note!-not use,just show
_NUM_TEST_SAMPLES = None
# Seed for repeatability.
_RANDOM_SEED = 0
class ImageReader(object):
"""Helper class that provides TensorFlow image coding utilities."""
def __init__(self):
# Initializes function that decodes none-RGB jpeg data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
# You can use "tf.image.decode_jpeg" instead.
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=1)
def read_image_dims(self, sess, image_data):
image = self.decode_jpeg(sess, image_data)
return image.shape[0], image.shape[1]
def decode_jpeg(self, sess, image_data):
image = sess.run(
self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 1
return image
def _get_output_filename(dataset_dir, split_name):
"""Creates the output filename.
Args:
dataset_dir: The directory where the temporary files are stored.
split_name: The name of the train/test split.
Returns:
An absolute file path.
"""
return '%s/FACE_%s.tfrecord' % (dataset_dir, split_name)
def _get_filenames(dataset_dir):
"""Returns a list of filenames and inferred class names.
Args:
dataset_dir: A directory containing a set jpeg encoded images.
Returns:
A list of image file paths, relative to `dataset_dir`.
"""
photo_filenames = []
for filename in os.listdir(dataset_dir):
photo_filenames.append(filename)
return photo_filenames
def _extract_labels(label_filename):
"""Extract the labels into a dict of filenames to int labels.
Args:
labels_filename: The filename of the labels.
Returns:
A dictionary of filenames to int labels.
"""
print('Extracting labels from: ', label_filename)
label_file = tf.gfile.FastGFile(label_filename, 'r').readlines()
label_lines = [line.rstrip('\n').split() for line in label_file]
labels = {}
for line in label_lines:
assert len(line) == 2
labels[line[0]] = int(line[1])
return labels
def _int64_feature(values):
"""Returns a TF-Feature of int64s.
Args:
values: A scalar or list of values.
Returns:
a TF-Feature.
"""
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def _bytes_feature(values):
"""Returns a TF-Feature of bytes.
Args:
values: A string.
Returns:
a TF-Feature.
"""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
def image_to_tfexample(image_data, image_format, height, width, class_id):
return tf.train.Example(features=tf.train.Features(feature={
'image/encoded': _bytes_feature(image_data),
'image/format': _bytes_feature(image_format),
'image/class/label': _int64_feature(class_id),
'image/height': _int64_feature(height),
'image/width': _int64_feature(width),
}))
def _convert_dataset(split_name, filenames, filename_to_class_id, dataset_dir):
"""Converts the given filenames to a TFRecord dataset.
Args:
split_name: The name of the dataset, either 'train' or 'valid'.
filenames: A list of absolute paths to jpeg images.
filename_to_class_id: A dictionary from filenames (strings) to class ids
(integers).
dataset_dir: The directory where the converted datasets are stored.
"""
print('Converting the {} split.'.format(split_name))
# Train and validation splits are both in the train directory.
if split_name in ['train', 'valid']:
jpeg_directory = os.path.join(dataset_dir,'train')
elif split_name == 'test':
jpeg_directory = os.path.join(dataset_dir, 'test')
with tf.Graph().as_default():
image_reader = ImageReader()
with tf.Session('') as sess:
output_filename = _get_output_filename(dataset_dir, split_name)
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
for filename in filenames:
# Read the filename:
image_data = tf.gfile.FastGFile(
os.path.join(jpeg_directory, filename), 'rb').read()
#print (len(image_data))
height, width = image_reader.read_image_dims(sess, image_data)
class_id = filename_to_class_id[filename]
example = image_to_tfexample(image_data, 'jpeg'.encode(), height,
width, class_id)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
def run(dataset_dir):
"""Runs conversion operation.
Args:
dataset_dir: The dataset directory where the dataset is stored.
"""
if not tf.gfile.Exists(dataset_dir):
tf.gfile.MakeDirs(dataset_dir)
train_filename = _get_output_filename(dataset_dir, 'train')
testing_filename = _get_output_filename(dataset_dir, 'test')
if tf.gfile.Exists(train_filename) and tf.gfile.Exists(testing_filename):
print('Dataset files already exist. Exiting without re-creating them.')
return
train_validation_filenames = _get_filenames(
os.path.join(dataset_dir, 'train'))
test_filenames = _get_filenames(
os.path.join(dataset_dir, 'test'))
# Divide into train and validation:
random.seed(_RANDOM_SEED)
random.shuffle(train_validation_filenames)
train_filenames = train_validation_filenames[_NUM_VALIDATION:]
validation_filenames = train_validation_filenames[:_NUM_VALIDATION]
train_validation_filenames_to_class_ids = _extract_labels(
os.path.join(dataset_dir, 'train_labels.txt'))
test_filenames_to_class_ids = _extract_labels(
os.path.join(dataset_dir, 'test_labels.txt'))
# Convert the train, validation, and test sets.
_convert_dataset('train', train_filenames,
train_validation_filenames_to_class_ids, dataset_dir)
_convert_dataset('valid', validation_filenames,
train_validation_filenames_to_class_ids, dataset_dir)
_convert_dataset('test', test_filenames, test_filenames_to_class_ids,
dataset_dir)
print('\nFinished converting the dataset!')
def main(_):
assert FLAGS.dataset_dir
run(FLAGS.dataset_dir)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。