加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
inference.py 6.34 KB
一键复制 编辑 原始数据 按行查看 历史
十指紧扣 提交于 2022-11-24 21:34 . 添加光谱图
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.nn as nn
import torch.utils.data as data
import torch.nn.functional as F
from torch.autograd import Variable as V
import cv2
import os
import math
import warnings
from tqdm import tqdm
import numpy as np
from data import ImageFolder
from models.networks.TransUnet import get_transNet
BATCHSIZE_PER_CARD = 8
class TTAFrame():
def __init__(self, net):
# self.net = net(out_planes=1).cuda()
self.net = net.cuda()
# self.net = net().cuda()
self.net = torch.nn.DataParallel(self.net, device_ids=range(torch.cuda.device_count()))
# self.net = torch.nn.DataParallel(self.net, device_ids=[0])
def test_one_img_from_path(self, path, evalmode = True):
if evalmode:
self.net.eval()
batchsize = torch.cuda.device_count() * BATCHSIZE_PER_CARD
if batchsize >= 8:
return self.test_one_img_from_path_1(path)
elif batchsize >= 4:
return self.test_one_img_from_path_2(path)
elif batchsize >= 2:
return self.test_one_img_from_path_4(path)
def test_one_img_from_path_8(self, img):
# img = cv2.imread(path)#.transpose(2,0,1)[None]
img90 = np.array(np.rot90(img))
img1 = np.concatenate([img[None],img90[None]])
img2 = np.array(img1)[:,::-1]
img3 = np.array(img1)[:,:,::-1]
img4 = np.array(img2)[:,:,::-1]
img1 = img1.transpose(0,3,1,2)
img2 = img2.transpose(0,3,1,2)
img3 = img3.transpose(0,3,1,2)
img4 = img4.transpose(0,3,1,2)
img1 = V(torch.Tensor(np.array(img1, np.float32)/255.0 * 3.2 - 1.6).cuda())
img2 = V(torch.Tensor(np.array(img2, np.float32)/255.0 * 3.2 - 1.6).cuda())
img3 = V(torch.Tensor(np.array(img3, np.float32)/255.0 * 3.2 - 1.6).cuda())
img4 = V(torch.Tensor(np.array(img4, np.float32)/255.0 * 3.2 - 1.6).cuda())
maska = self.net.forward(img1).squeeze().cpu().data.numpy()
maskb = self.net.forward(img2).squeeze().cpu().data.numpy()
maskc = self.net.forward(img3).squeeze().cpu().data.numpy()
maskd = self.net.forward(img4).squeeze().cpu().data.numpy()
mask1 = maska + maskb[:,::-1] + maskc[:,:,::-1] + maskd[:,::-1,::-1]
mask2 = mask1[0] + np.rot90(mask1[1])[::-1,::-1]
return mask2
def test_one_img_from_path_4(self, path):
img = cv2.imread(path)#.transpose(2,0,1)[None]
img90 = np.array(np.rot90(img))
img1 = np.concatenate([img[None],img90[None]])
img2 = np.array(img1)[:,::-1]
img3 = np.array(img1)[:,:,::-1]
img4 = np.array(img2)[:,:,::-1]
img1 = img1.transpose(0,3,1,2)
img2 = img2.transpose(0,3,1,2)
img3 = img3.transpose(0,3,1,2)
img4 = img4.transpose(0,3,1,2)
img1 = V(torch.Tensor(np.array(img1, np.float32)/255.0 * 3.2 -1.6).cuda())
img2 = V(torch.Tensor(np.array(img2, np.float32)/255.0 * 3.2 -1.6).cuda())
img3 = V(torch.Tensor(np.array(img3, np.float32)/255.0 * 3.2 -1.6).cuda())
img4 = V(torch.Tensor(np.array(img4, np.float32)/255.0 * 3.2 -1.6).cuda())
maska = self.net.forward(img1).squeeze().cpu().data.numpy()
maskb = self.net.forward(img2).squeeze().cpu().data.numpy()
maskc = self.net.forward(img3).squeeze().cpu().data.numpy()
maskd = self.net.forward(img4).squeeze().cpu().data.numpy()
mask1 = maska + maskb[:,::-1] + maskc[:,:,::-1] + maskd[:,::-1,::-1]
mask2 = mask1[0] + np.rot90(mask1[1])[::-1,::-1]
return mask2
def test_one_img_from_path_2(self, path):
img = cv2.imread(path)#.transpose(2,0,1)[None]
img90 = np.array(np.rot90(img))
img1 = np.concatenate([img[None],img90[None]])
img2 = np.array(img1)[:,::-1]
img3 = np.concatenate([img1,img2])
img4 = np.array(img3)[:,:,::-1]
img5 = img3.transpose(0,3,1,2)
img5 = np.array(img5, np.float32)/255.0 * 3.2 -1.6
img5 = V(torch.Tensor(img5).cuda())
img6 = img4.transpose(0,3,1,2)
img6 = np.array(img6, np.float32)/255.0 * 3.2 -1.6
img6 = V(torch.Tensor(img6).cuda())
maska = self.net.forward(img5).squeeze().cpu().data.numpy()#.squeeze(1)
maskb = self.net.forward(img6).squeeze().cpu().data.numpy()
mask1 = maska + maskb[:,:,::-1]
mask2 = mask1[:2] + mask1[2:,::-1]
mask3 = mask2[0] + np.rot90(mask2[1])[::-1,::-1]
return mask3
def test_one_img_from_path_1(self, img):
# img = cv2.imread(path)#.transpose(2,0,1)[None]
img90 = np.array(np.rot90(img))
img1 = np.concatenate([img[None],img90[None]])
img2 = np.array(img1)[:,::-1]
img3 = np.concatenate([img1,img2])
img4 = np.array(img3)[:,:,::-1]
img5 = np.concatenate([img3,img4]).transpose(0,3,1,2)
img5 = np.array(img5, np.float32)/255.0 * 3.2 -1.6
img5 = V(torch.Tensor(img5).cuda())
mask = self.net.forward(img5).squeeze().cpu().data.numpy()#.squeeze(1)
mask1 = mask[:4] + mask[4:,:,::-1]
mask2 = mask1[:2] + mask1[2:,::-1]
mask3 = mask2[0] + np.rot90(mask2[1])[::-1,::-1]
return mask3
def load(self, path):
self.net.load_state_dict(torch.load(path))
# self.net.load_state_dict(torch.load(path,map_location={'cuda:4':'cuda:0'}))
def tta_use(self,img):
#1
tta_model = tta.SegmentationTTAWrapper(self.net, tta.aliases.flip_transform(), merge_mode='mean')
img = img.transpose(2,1,0)
img = np.array(img, np.float32)/255.0 * 3.2 -1.6
img = V(torch.Tensor(img).cuda())
# print(img.shape)
mask = tta_model.forward(img.unsqueeze(0)).squeeze().cpu().data.numpy()
return mask
if __name__ == "__main__":
test_path = './data_path/test/images/'
save_path = './data_path/test_output/'
imgs = os.listdir(test_path)
model_path = './weights/train_build_val_loss_best.th'
net = get_transNet(16)
solver = TTAFrame(net)
solver.load(model_path)
for img in tqdm(imgs,ncols=20,total=len(imgs)):
img_path = os.path.join(test_path, img)
im = cv2.imread(img_path)
im = cv2.resize(im, (256, 256))
pre = solver.test_one_img_from_path_8(im)
pre[pre>=4.0] = 255
pre[pre<4.0] = 0
save_out = os.path.join(save_path, img)
cv2.imwrite(save_out, pre)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化