代码拉取完成,页面将自动刷新
import argparse
import logging
import os
import random
import sys
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from datasets.dataset_synapse import Synapse_dataset
from torchvision import transforms
from utils import test_single_volume
from networks.vit_seg_modeling import VisionTransformer as ViT_seg
from networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
parser = argparse.ArgumentParser()
# parser.add_argument('--volume_path', type=str,
# default='../data/Synapse/test_vol_h5', help='root dir for validation volume data') # for acdc volume_path=root_dir
parser.add_argument('--root_path', type=str,
default='data/Indian_pines', help='root dir for data')
parser.add_argument('--dataset', type=str,
default='Indian_pines', help='experiment_name')
parser.add_argument('--list_dir', type=str,
default='./lists/lists_Synapse', help='list dir')
parser.add_argument('--num_classes', type=int,
default=9, help='output channel of network')
parser.add_argument('--max_iterations', type=int,default=20000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int, default=5, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=4,
help='batch_size per gpu')
parser.add_argument('--img_size', type=int, default=224, help='input patch size of network input')
parser.add_argument('--is_savenii', action="store_true", help='whether to save results during inference')
parser.add_argument('--n_skip', type=int, default=3, help='using number of skip-connect, default is num')
parser.add_argument('--vit_name', type=str, default='ViT-B_16', help='select one vit model')
parser.add_argument('--test_save_dir', type=str, default='../predictions', help='saving prediction as nii!')
parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01, help='segmentation network learning rate')
parser.add_argument('--seed', type=int, default=1234, help='random seed')
parser.add_argument('--vit_patches_size', type=int, default=16, help='vit_patches_size, default is 16')
args = parser.parse_args()
def inference(args, model, test_save_path=None):
from datasets.dataset_Indian_pines import Indian_pines_dataset, TestGenerator
db_test = Indian_pines_dataset(base_dir=args.root_path, split="test", list_dir=args.list_dir,transform=transforms.Compose(
[TestGenerator(output_size=[args.img_size, args.img_size])]))
testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)
logging.info("{} test iterations per epoch".format(len(testloader)))
model.eval()
metric_list = 0.0
for i_batch, sampled_batch in tqdm(enumerate(testloader)):
h, w = sampled_batch["image"].size()[2:]
image, label, case_name = sampled_batch["image"], sampled_batch["label"], sampled_batch['case_name'][0]
metric_i = test_single_volume(image, label, model, classes=args.num_classes, patch_size=[args.img_size, args.img_size],
test_save_path=test_save_path, case=case_name, z_spacing=args.z_spacing)
metric_list += np.array(metric_i)
logging.info('idx %d case %s mean_dice %f mean_hd95 %f' % (i_batch, case_name, np.mean(metric_i, axis=0)[0], np.mean(metric_i, axis=0)[1]))
metric_list = metric_list / len(db_test)
for i in range(1, args.num_classes):
logging.info('Mean class %d mean_dice %f mean_hd95 %f' % (i, metric_list[i-1][0], metric_list[i-1][1]))
performance = np.mean(metric_list, axis=0)[0]
mean_hd95 = np.mean(metric_list, axis=0)[1]
logging.info('Testing performance in best val model: mean_dice : %f mean_hd95 : %f' % (performance, mean_hd95))
return "Testing Finished!"
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
dataset_config = {
'Synapse': {
'Dataset': Synapse_dataset,
'volume_path': '../data/Synapse/test_vol_h5',
'list_dir': './lists/lists_Synapse',
'num_classes': 9,
'z_spacing': 1,
},
'Indian_pines': {
'root_path': 'data/Indian_pines',
'list_dir': './lists/Indian_pines', # 实际没有用到
'num_classes': 17,
'z_spacing': 1,
},
}
dataset_name = args.dataset
args.num_classes = dataset_config[dataset_name]['num_classes']
# args.volume_path = dataset_config[dataset_name]['volume_path']
args.root_path = dataset_config[dataset_name]['root_path']
args.list_dir = dataset_config[dataset_name]['list_dir']
args.z_spacing = dataset_config[dataset_name]['z_spacing']
args.is_pretrain = True
# name the same snapshot defined in train script!
args.exp = 'TU_' + dataset_name + str(args.img_size)
snapshot_path = "../model/{}/{}".format(args.exp, 'TU')
snapshot_path = snapshot_path + '_pretrain' if args.is_pretrain else snapshot_path
snapshot_path += '_' + args.vit_name
snapshot_path = snapshot_path + '_skip' + str(args.n_skip)
snapshot_path = snapshot_path + '_vitpatch' + str(args.vit_patches_size) if args.vit_patches_size!=16 else snapshot_path
snapshot_path = snapshot_path + '_epo' + str(args.max_epochs) if args.max_epochs != 30 else snapshot_path
if dataset_name == 'ACDC': # using max_epoch instead of iteration to control training duration
snapshot_path = snapshot_path + '_' + str(args.max_iterations)[0:2] + 'k' if args.max_iterations != 30000 else snapshot_path
snapshot_path = snapshot_path+'_bs'+str(args.batch_size)
snapshot_path = snapshot_path + '_lr' + str(args.base_lr) if args.base_lr != 0.01 else snapshot_path
snapshot_path = snapshot_path + '_'+str(args.img_size)
snapshot_path = snapshot_path + '_s'+str(args.seed) if args.seed!=1234 else snapshot_path
config_vit = CONFIGS_ViT_seg[args.vit_name]
config_vit.n_classes = args.num_classes
config_vit.n_skip = args.n_skip
config_vit.patches.size = (args.vit_patches_size, args.vit_patches_size)
if args.vit_name.find('R50') !=-1:
config_vit.patches.grid = (int(args.img_size/args.vit_patches_size), int(args.img_size/args.vit_patches_size))
net = ViT_seg(config_vit, img_size=args.img_size, num_classes=config_vit.n_classes).cuda()
snapshot = os.path.join(snapshot_path, 'best_model.pth')
if not os.path.exists(snapshot): snapshot = snapshot.replace('best_model', 'epoch_'+str(args.max_epochs-1))
net.load_state_dict(torch.load(snapshot))
snapshot_name = snapshot_path.split('/')[-1]
log_folder = './test_log/test_log_' + args.exp
os.makedirs(log_folder, exist_ok=True)
logging.basicConfig(filename=log_folder + '/'+snapshot_name+".txt", level=logging.INFO, format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
logging.info(snapshot_name)
if args.is_savenii:
args.test_save_dir = '../predictions'
test_save_path = os.path.join(args.test_save_dir, args.exp, snapshot_name)
os.makedirs(test_save_path, exist_ok=True)
else:
test_save_path = None
inference(args, net, test_save_path)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。