代码拉取完成,页面将自动刷新
#encoding:utf-8
from __future__ import print_function
from text_model import *
from loader import *
from sklearn import metrics
import sys
import os
import time
from datetime import timedelta
def evaluate(sess, x_, y_):
data_len = len(x_)
batch_eval = batch_iter(x_, y_, 128)
total_loss = 0.0
total_acc = 0.0
for x_batch, y_batch in batch_eval:
batch_len = len(x_batch)
feed_dict = feed_data(x_batch, y_batch, 1.0)
loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict)
total_loss += loss * batch_len
total_acc += acc * batch_len
return total_loss / data_len, total_acc / data_len
def feed_data(x_batch, y_batch, keep_prob):
feed_dict = {
model.input_x: x_batch,
model.input_y: y_batch,
model.keep_prob:keep_prob
}
return feed_dict
def train():
print("Configuring TensorBoard and Saver...")
tensorboard_dir = './tensorboard/textcnn'
save_dir = './checkpoints/textcnn'
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path = os.path.join(save_dir, 'best_validation')
print("Loading training and validation data...")
start_time = time.time()
x_train, y_train = process_file(config.train_filename, word_to_id, cat_to_id, config.seq_length)
x_val, y_val = process_file(config.val_filename, word_to_id, cat_to_id, config.seq_length)
#print("数组的维度数目",x_val.shape,y_val.shape)
#print("y_train",x_train.shape,y_train.shape)
#print("取出xtrain[6459][600]的第一行",x_train[0,:])
#print("取出y_train[6459][34]的第一行",y_train[0,:]) #儿科
print("Time cost: %.3f seconds...\n" % (time.time() - start_time))
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("accuracy", model.acc)
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(tensorboard_dir)
saver = tf.train.Saver()
session = tf.Session()
session.run(tf.global_variables_initializer())
writer.add_graph(session.graph)
print('Training and evaluating...')
best_val_accuracy = 0
last_improved = 0 # record global_step at best_val_accuracy
require_improvement = 1000 # break training if not having improvement over 1000 iter
flag=False
for epoch in range(config.num_epochs):
batch_train = batch_iter(x_train, y_train, config.batch_size)
#print("========",x_train,"++++++++",y_train)
start = time.time()
print('Epoch:', epoch + 1)
for x_batch, y_batch in batch_train:
feed_dict = feed_data(x_batch, y_batch, config.keep_prob)
_, global_step, train_summaries, train_loss, train_accuracy = session.run([model.optim, model.global_step,
merged_summary, model.loss,
model.acc], feed_dict=feed_dict)
if global_step % config.print_per_batch == 0:
end = time.time()
val_loss, val_accuracy = evaluate(session, x_val, y_val)
writer.add_summary(train_summaries, global_step)
# If improved, save the model
if val_accuracy > best_val_accuracy:
saver.save(session, save_path)
best_val_accuracy = val_accuracy
last_improved=global_step
improved_str = '*'
else:
improved_str = ''
print("step: {},train loss: {:.3f}, train accuracy: {:.3f}, val loss: {:.3f}, val accuracy: {:.3f},training speed: {:.3f}sec/batch {}\n".format(
global_step, train_loss, train_accuracy, val_loss, val_accuracy,
(end - start) / config.print_per_batch,improved_str))
start = time.time()
if global_step - last_improved > require_improvement:
print("No optimization over 1000 steps, stop training")
flag = True
break
if flag:
break
config.lr *= config.lr_decay
if __name__ == '__main__':
print('Configuring CNN model...')
config = TextConfig()
filenames = [config.train_filename, config.test_filename, config.val_filename]
if not os.path.exists(config.vocab_filename):
build_vocab(filenames, config.vocab_filename, config.vocab_size)
#read vocab and categories
categories,cat_to_id = read_category()
words,word_to_id = read_vocab(config.vocab_filename)
config.vocab_size = len(words)
# trans vector file to numpy file
if not os.path.exists(config.vector_word_npz):
export_word2vec_vectors(word_to_id, config.vector_word_filename, config.vector_word_npz)
config.pre_trianing = get_training_word2vec_vectors(config.vector_word_npz)
model = TextCNN(config)
train()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。