代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/spleeter 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
% bibtex
@inproceedings{SISEC18,
author = {{St{\"o}ter}, Fabian-Robert and {Liutkus}, Antoine and {Ito}, Nobutaka},
title = {The 2018 Signal Separation Evaluation Campaign},
year = {2018},
booktitle = {Latent Variable Analysis and Signal Separation. {LVA}/{ICA}},
vol={10891},
doi = {10.1007/978-3-319-93764-9_28},
publisher = { Springer, Cham}
}
@misc{spleeter2019,
title={Spleeter: A Fast And State-of-the Art Music Source Separation Tool With Pre-trained Models},
author={Romain Hennequin and Anis Khlif and Felix Voituret and Manuel Moussallam},
howpublished={Late-Breaking/Demo ISMIR 2019},
month={November},
note={Deezer Research},
year={2019}
}
@inproceedings{unet2017,
title={Singing voice separation with deep U-Net convolutional networks},
author={Jansson, Andreas and Humphrey, Eric J. and Montecchio, Nicola and Bittner, Rachel and Kumar, Aparna and Weyde, Tillman},
booktitle={Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)},
pages={323--332},
year={2017}
}
@inproceedings{deezerICASSP2019,
author={Laure {Pr\'etet} and Romain {Hennequin} and Jimena {Royo-Letelier} and Andrea {Vaglio}},
booktitle={ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Singing Voice Separation: A Study on Training Data},
year={2019},
volume={},
number={},
pages={506-510},
keywords={feature extraction;source separation;speech processing;supervised training;separation quality;data augmentation;singing voice separation systems;singing voice separation algorithms;separation diversity;source separation;supervised learning;training data;data augmentation},
doi={10.1109/ICASSP.2019.8683555},
ISSN={},
month={May},}
@misc{Norbert,
author = {Antoine Liutkus and
Fabian-Robert St{\"o}ter},
title = {sigsep/norbert: First official Norbert release},
month = jul,
year = 2019,
doi = {10.5281/zenodo.3269749},
url = {https://doi.org/10.5281/zenodo.3269749}
}
@ARTICLE{separation_metrics,
author={Emmanuel {Vincent} and Remi {Gribonval} and Cedric {Fevotte}},
journal={IEEE Transactions on Audio, Speech, and Language Processing},
title={Performance measurement in blind audio source separation},
year={2006},
volume={14},
number={4},
pages={1462-1469},
keywords={audio signal processing;blind source separation;distortion;time-varying filters;blind audio source separation;distortions;time-invariant gains;time-varying filters;source estimation;interference;additive noise;algorithmic artifacts;Source separation;Data mining;Filters;Additive noise;Microphones;Distortion measurement;Energy measurement;Independent component analysis;Interference;Image analysis;Audio source separation;evaluation;measure;performance;quality},
doi={10.1109/TSA.2005.858005},
ISSN={},
month={July},}
@misc{musdb18,
author = {Rafii, Zafar and
Liutkus, Antoine and
Fabian-Robert St{\"o}ter and
Mimilakis, Stylianos Ioannis and
Bittner, Rachel},
title = {The {MUSDB18} corpus for music separation},
month = dec,
year = 2017,
doi = {10.5281/zenodo.1117372},
url = {https://doi.org/10.5281/zenodo.1117372}
}
@misc{tensorflow2015-whitepaper,
title={ {TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={https://www.tensorflow.org/},
note={Software available from tensorflow.org},
author={
Abadi, Mart{\'{\i}}n et al.},
year={2015},
}
@article{2019arXiv190611139L,
author = {{Lee}, Kyungyun and {Nam}, Juhan},
title = "{Learning a Joint Embedding Space of Monophonic and Mixed Music Signals for Singing Voice}",
journal = {arXiv e-prints},
keywords = {Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing},
year = "2019",
month = "Jun",
eid = {arXiv:1906.11139},
pages = {arXiv:1906.11139},
archivePrefix = {arXiv},
eprint = {1906.11139},
primaryClass = {cs.SD},
adsurl = {https://ui.adsabs.harvard.edu/abs/2019arXiv190611139L},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{Adam,
author = {{Kingma}, Diederik P. and {Ba}, Jimmy},
title = "{Adam: A Method for Stochastic Optimization}",
journal = {arXiv e-prints},
keywords = {Computer Science - Machine Learning},
year = "2014",
month = "Dec",
eid = {arXiv:1412.6980},
pages = {arXiv:1412.6980},
archivePrefix = {arXiv},
eprint = {1412.6980},
primaryClass = {cs.LG},
adsurl = {https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{Open-Unmix,
author={Fabian-Robert St\"{o}ter and Stefan Uhlich and Antoine Liutkus and Yuki Mitsufuji},
title={Open-Unmix - A Reference Implementation for Music Source Separation},
journal={Journal of Open Source Software},
year=2019,
doi = {10.21105/joss.01667},
url = {https://doi.org/10.21105/joss.01667}
}
@misc{spleeter,
author={Romain Hennequin and Anis Khlif and Felix Voituret and Manuel Moussallam},
title={Spleeter},
year=2019,
url = {https://www.github.com/deezer/spleeter}
}
@misc{demucs,
title={Music Source Separation in the Waveform Domain},
author={Alexandre Défossez and Nicolas Usunier and Léon Bottou and Francis Bach},
year={2019},
eprint={1911.13254},
archivePrefix={arXiv},
primaryClass={cs.SD}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。