代码拉取完成,页面将自动刷新
import os
import sys
import numpy as np
import argparse
import time
import librosa
import torch
import piano_transcription_inference
import piano_detection_model
from utilities import get_filename
from dataset import read_csv_to_meta_dict, write_meta_dict_to_csv
import config
def calculate_piano_solo_prob(args):
"""Calculate the piano solo probability of all downloaded mp3s, and append
the probability to the meta csv file.
"""
# Arguments & parameters
workspace = args.workspace
mp3s_dir = args.mp3s_dir
mini_data = args.mini_data
sample_rate = piano_detection_model.SR
if mini_data:
prefix = 'minidata_'
else:
prefix = ''
# Paths
similarity_csv_path = os.path.join(workspace,
'{}full_music_pieces_youtube_similarity.csv'.format(prefix))
piano_prediction_path = os.path.join(workspace,
'{}full_music_pieces_youtube_similarity_pianosoloprob.csv'.format(prefix))
# Meta info
meta_dict = read_csv_to_meta_dict(similarity_csv_path)
meta_dict['piano_solo_prob'] = []
meta_dict['audio_name'] = []
meta_dict['audio_duration'] = []
count = 0
piano_solo_detector = piano_detection_model.PianoSoloDetector()
for n in range(len(meta_dict['surname'])):
mp3_path = os.path.join(mp3s_dir, '{}, {}, {}, {}.mp3'.format(
meta_dict['surname'][n], meta_dict['firstname'][n],
meta_dict['music'][n], meta_dict['youtube_id'][n]).replace('/', '_'))
if os.path.exists(mp3_path):
(audio, _) = librosa.core.load(mp3_path, sr=sample_rate, mono=True)
try:
probs = piano_solo_detector.predict(audio)
prob = np.mean(probs)
except:
prob = 0
print(n, mp3_path, prob)
meta_dict['audio_name'].append(get_filename(mp3_path))
meta_dict['piano_solo_prob'].append(prob)
meta_dict['audio_duration'].append(len(audio) / sample_rate)
else:
meta_dict['piano_solo_prob'].append('')
meta_dict['audio_name'].append('')
meta_dict['audio_duration'].append('')
write_meta_dict_to_csv(meta_dict, piano_prediction_path)
print('Write out to {}'.format(piano_prediction_path))
def transcribe_piano(args):
"""Transcribe piano solo mp3s to midi files.
"""
# Arguments & parameters
workspace = args.workspace
mp3s_dir = args.mp3s_dir
midis_dir = args.midis_dir
begin_index = args.begin_index
end_index = args.end_index
mini_data = args.mini_data
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if mini_data:
prefix = 'minidata_'
else:
prefix = ''
# Paths
csv_path = os.path.join('./resources/full_music_pieces_youtube_similarity_pianosoloprob_split.csv')
os.makedirs(midis_dir, exist_ok=True)
# Meta info
meta_dict = read_csv_to_meta_dict(csv_path)
# Transcriptor
transcriptor = piano_transcription_inference.PianoTranscription(device=device)
count = 0
transcribe_time = time.time()
audios_num = len(meta_dict['surname'])
for n in range(begin_index, min(end_index, audios_num)):
if meta_dict['giant_midi_piano'][n] and int(meta_dict['giant_midi_piano'][n]) == 1:
count += 1
mp3_path = os.path.join(mp3s_dir, '{}.mp3'.format(meta_dict['audio_name'][n]))
print(n, mp3_path)
midi_path = os.path.join(midis_dir, '{}.mid'.format(meta_dict['audio_name'][n]))
(audio, _) = piano_transcription_inference.load_audio(mp3_path,
sr=piano_transcription_inference.sample_rate, mono=True)
try:
# Transcribe
transcribed_dict = transcriptor.transcribe(audio, midi_path)
except:
print('Failed for this audio!')
print('Time: {:.3f} s'.format(time.time() - transcribe_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of parser. ')
subparsers = parser.add_subparsers(dest='mode')
# Plot statistics
parser_predict_piano = subparsers.add_parser('calculate_piano_solo_prob')
parser_predict_piano.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_predict_piano.add_argument('--mp3s_dir', type=str, required=True, help='')
parser_predict_piano.add_argument('--mini_data', action='store_true', default=False)
parser_transcribe_piano = subparsers.add_parser('transcribe_piano')
parser_transcribe_piano.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_transcribe_piano.add_argument('--mp3s_dir', type=str, required=True, help='')
parser_transcribe_piano.add_argument('--midis_dir', type=str, required=True, help='')
parser_transcribe_piano.add_argument('--begin_index', type=int, required=True, help='')
parser_transcribe_piano.add_argument('--end_index', type=int, required=True, help='')
parser_transcribe_piano.add_argument('--mini_data', action='store_true', default=False)
# Parse arguments
args = parser.parse_args()
if args.mode == 'calculate_piano_solo_prob':
calculate_piano_solo_prob(args)
elif args.mode == 'transcribe_piano':
transcribe_piano(args)
else:
raise Exception('Error argument!')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。