代码拉取完成,页面将自动刷新
# @Time : 12/05/2021
# @Author : Wei Chen
# @Project : Pycharm
from __future__ import print_function
import os
import argparse
import torch.optim as optim
from torch.autograd import Variable
import torch
from Net_archs import GCN3D_segR, Rot_green, Rot_red, Point_center_res_cate
from data_loader_fsnet import load_pts_train_cate
import torch.nn as nn
import numpy as np
import time
from uti_tool import data_augment
from pyTorchChamferDistance.chamfer_distance import ChamferDistance
parser = argparse.ArgumentParser()
parser.add_argument('--batchSize', type=int, default=14, help='input batch size')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--nepoch', type=int, default=50, help='number of epochs to train for')
parser.add_argument('--outf', type=str, default='models', help='output folder')
parser.add_argument('--outclass', type=int, default=2, help='point class')
parser.add_argument('--model', type=str, default='', help='model path')
opt = parser.parse_args()
kc = opt.outclass
num_cor = 3
num_vec = 8
nw=0 # number of cpu
localtime = (time.localtime(time.time()))
year = localtime.tm_year
month = localtime.tm_mon
day = localtime.tm_mday
hour = localtime.tm_hour
cats = ['bottle','bowl','can','camera','laptop','mug']
for cat in ['laptop']:
classifier_seg3D = GCN3D_segR(class_num=2, vec_num = 1,support_num= 7, neighbor_num= 10)
classifier_ce = Point_center_res_cate() ## translation estimation
classifier_Rot_red = Rot_red(F=1296, k= 6) ## rotation red
classifier_Rot_green = Rot_green(F=1296, k=6)### rotation green
num_classes = opt.outclass
Loss_seg3D = nn.CrossEntropyLoss()
Loss_func_ce = nn.MSELoss()
Loss_func_Rot1 = nn.MSELoss()
Loss_func_Rot2 = nn.MSELoss()
Loss_func_s = nn.MSELoss()
classifier_seg3D = nn.DataParallel(classifier_seg3D)
classifier_ce = nn.DataParallel(classifier_ce)
classifier_Rot_red = nn.DataParallel(classifier_Rot_red)
classifier_Rot_green = nn.DataParallel(classifier_Rot_green)
classifier_seg3D = classifier_seg3D.train()
classifier_ce = classifier_ce.train()
classifier_Rot_red = classifier_Rot_red.train()
classifier_Rot_green = classifier_Rot_green.train()
Loss_seg3D.cuda()
Loss_func_ce.cuda()
Loss_func_Rot1.cuda()
Loss_func_Rot2.cuda()
Loss_func_s.cuda()
classifier_seg3D.cuda()
classifier_ce.cuda()
classifier_Rot_red.cuda()
classifier_Rot_green.cuda()
opt.outf = 'models/FS_Net_%s'%(cat)
try:
os.makedirs(opt.outf)
except OSError:
pass
sepoch = 0
batch_size = 12 #
lr = 0.001
epochs = opt.nepoch
optimizer = optim.Adam([{'params': classifier_seg3D.parameters()},{'params': classifier_ce.parameters()},{'params': classifier_Rot_red.parameters()},{'params': classifier_Rot_green.parameters()}], lr=lr, betas=(0.9, 0.99))
bbxs = 0
K = np.array([[591.0125, 0, 322.525], [0, 590.16775, 244.11084], [0, 0, 1]])
data_path = 'your data path'
dataloader = load_pts_train_cate(data_path, batch_size, K,cat, lim=1, rad=300, shuf=True, drop=True, corners=0,nw=nw)
for epoch in range(sepoch,epochs):
if epoch > 0 and epoch % (epochs // 5) == 0:
lr = lr / 4
optimizer.param_groups[0]['lr'] = lr
optimizer.param_groups[1]['lr'] = lr * 10
optimizer.param_groups[2]['lr'] = lr * 20
optimizer.param_groups[3]['lr'] = lr * 20
for i, data in enumerate(dataloader):
points, target_, Rs, Ts, obj_id,S, imgp= data['points'], data['label'], data['R'], data['T'], data['cate_id'], data['scale'], data['dep']
ptsori = points.clone()
target_seg = target_[:, :, 0] ###seg_target
points_ = points.numpy().copy()
points, corners, centers, pts_recon = data_augment(points_[:, :, 0:3], Rs, Ts,num_cor, target_seg,a=15.0)
points, target_seg, pts_recon = Variable(torch.Tensor(points)), Variable(target_seg), Variable(pts_recon)
points, target_seg,pts_recon = points.cuda(), target_seg.cuda(), pts_recon.cuda()
pointsf = points[:, :, 0:3].unsqueeze(2)
optimizer.zero_grad()
points = pointsf.transpose(3, 1)
points_n = pointsf.squeeze(2)
obj_idh = torch.zeros((1,1))
if obj_idh.shape[0] == 1:
obj_idh = obj_idh.view(-1, 1).repeat(points.shape[0], 1)
else:
obj_idh = obj_idh.view(-1, 1)
one_hot = torch.zeros(points.shape[0], 16).scatter_(1, obj_idh.cpu().long(), 1)
one_hot = one_hot.cuda() ## the pre-defined category ID
pred_seg, box_pred_, feavecs = classifier_seg3D(points_n, one_hot)
pred_choice = pred_seg.data.max(2)[1] ## B N
# print(pred_choice[0])
p = pred_choice # [0].cpu().numpy() B N
N_seg = 1000
pts_s = torch.zeros(points.shape[0], N_seg, 3)
box_pred = torch.zeros(points.shape[0], N_seg, 3)
pts_sv = torch.zeros(points.shape[0], N_seg, 3)
feat = torch.zeros(points.shape[0], N_seg, feavecs.shape[2])
corners0 = torch.zeros((points.shape[0], num_cor, 3))
if torch.cuda.is_available():
ptsori = ptsori.cuda()
Tt = np.zeros((points.shape[0], 3))
for ib in range(points.shape[0]):
if len(p[ib, :].nonzero()) < 10:
continue
pts_ = torch.index_select(ptsori[ib, :, 0:3], 0, p[ib, :].nonzero()[:, 0]) ##Nx3
box_pred__ = torch.index_select(box_pred_[ib, :, :], 0, p[ib, :].nonzero()[:, 0])
feavec_ = torch.index_select(feavecs[ib, :, :], 0, p[ib, :].nonzero()[:, 0])
choice = np.random.choice(len(pts_), N_seg, replace=True)
pts_s[ib, :, :] = pts_[choice, :]
box_pred[ib] = box_pred__[choice]
feat[ib, :, :] = feavec_[choice, :]
corners0[ib] = torch.Tensor(np.array([[0,0,0],[0,200,0],[200,0,0]]))
pts_s = pts_s.cuda()
pts_s = pts_s.transpose(2, 1)
cen_pred,obj_size = classifier_ce((pts_s - pts_s.mean(dim=2, keepdim=True)), obj_id)
feavec = feat.transpose(1, 2)
kp_m = classifier_Rot_green(feavec)
centers = Variable(torch.Tensor((centers)))
corners = Variable(torch.Tensor((corners)))
if torch.cuda.is_available():
box_pred = box_pred.cuda()
centers = centers.cuda()
S = S.cuda()
corners = corners.cuda()
feat = feat.cuda()
corners0 = corners0.cuda()
loss_seg = Loss_seg3D(pred_seg.reshape(-1, pred_seg.size(-1)), target_seg.view(-1,).long())
loss_res = Loss_func_ce(cen_pred, centers.float())
loss_size = Loss_func_s(obj_size,S.float())
def loss_recon(a, b):
if torch.cuda.is_available():
chamferdist = ChamferDistance()
dist1, dist2 = chamferdist(a, b)
loss = torch.mean(dist1) + torch.mean(dist2)
else:
loss=torch.Tensor([100.0])
return loss
loss_vec = loss_recon(box_pred, pts_recon)
kp_m2 = classifier_Rot_red(feat.transpose(1,2)) # .detach())
green_v = corners[:, 0:6].float().clone()
red_v = corners[:, (0, 1, 2, 6, 7, 8)].float().clone()
target = torch.tensor([[1]], dtype=torch.float).cuda()
loss_rot_g= Loss_func_Rot1(kp_m, green_v)
loss_rot_r = Loss_func_Rot2(kp_m2, red_v)
symme=1
if cat in ['bottle','bowl','can']:
symme=0.0
Loss = loss_seg*20.0+loss_res/20.0+loss_vec/200.0+loss_size/20.0+symme*loss_rot_r/100.0+loss_rot_g/100.0
Loss.backward()
optimizer.step()
print(cat)
print('[%d: %d] train loss_seg: %f, loss_res: %f, loss_recon: %f, loss_size: %f, loss_rot_g: %f, '
'loss_rot_r: %f' % (
epoch, i, loss_seg.item(), loss_res.item(), loss_vec.item(), loss_size.item(), loss_rot_g.item(),
loss_rot_r.item()))
print()
torch.save(classifier_seg3D.state_dict(), '%s/Seg3D_last_obj%s.pth' % (opt.outf,
cat))
torch.save(classifier_ce.state_dict(), '%s/Tres_last_obj%s.pth' % (opt.outf, cat))
torch.save(classifier_Rot_green.state_dict(),
'%s/Rot_g_last_obj%s.pth' % (opt.outf, cat))
torch.save(classifier_Rot_red.state_dict(),
'%s/Rot_r_last_obj%s.pth' % (opt.outf, cat))
if epoch>0 and epoch %(epochs//5)== 0: ##save mid checkpoints
torch.save(classifier_seg3D.state_dict(), '%s/Seg3D_epoch%d_obj%s.pth' % (opt.outf,
epoch, cat))
torch.save(classifier_ce.state_dict(), '%s/Tres_epoch%d_obj%s.pth' % (opt.outf, epoch, cat))
torch.save(classifier_Rot_green.state_dict(),
'%s/Rot_g_epoch%d_obj%s.pth' % (opt.outf, epoch, cat))
torch.save(classifier_Rot_red.state_dict(),
'%s/Rot_r_epoch%d_obj%s.pth' % (opt.outf, epoch, cat))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。