代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/EmotiVoice 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Prediction interface for Cog ⚙️DEVICE
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
from typing import List
import numpy as np
from yacs import config as CONFIG
import torch
import re
import os, glob
import time
import subprocess
import requests
import soundfile as sf
from frontend_cn import g2p_cn
from frontend_en import preprocess_english
from config.joint.config import Config
from models.prompt_tts_modified.jets import JETSGenerator
from models.prompt_tts_modified.simbert import StyleEncoder
from transformers import AutoTokenizer
MAX_WAV_VALUE = 32768.0
# url for the weights mirror
REPLICATE_WEIGHTS_URL = "https://weights.replicate.delivery/default"
# files to download from the weights mirrors
DEFAULT_WEIGHTS = [
{
"dest": "outputs/prompt_tts_open_source_joint/ckpt",
"src": "EmotiVoice",
"files": [
"do_00140000",
"g_00140000",
],
},
{
"dest": "outputs/style_encoder/ckpt",
"src": "EmotiVoice",
"files": [
"checkpoint_163431",
],
},
{
"dest": "WangZeJun/simbert-base-chinese",
"src": "simbert-base-chinese/b5c82a8ab1e4bcac799620fc4d870aae087b0c71",
"files": [
"pytorch_model.bin",
"config.json",
"vocab.txt",
],
}
]
def scan_checkpoint(cp_dir, prefix, c=8):
pattern = os.path.join(cp_dir, prefix + '?'*c)
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return None
return sorted(cp_list)[-1]
def g2p_en(text):
return preprocess_english(text)
def contains_chinese(text):
pattern = re.compile(r'[\u4e00-\u9fa5]')
match = re.search(pattern, text)
return match is not None
def download_json(url: str, dest: Path):
res = requests.get(url, allow_redirects=True)
if res.status_code == 200 and res.content:
with dest.open("wb") as f:
f.write(res.content)
else:
print(f"Failed to download {url}. Status code: {res.status_code}")
def download_weights(baseurl: str, basedest: str, files: List[str]):
"""Download model weights from Replicate and save to file.
Weights and download locations are specified in DEFAULT_WEIGHTS
"""
basedest = Path(basedest)
start = time.time()
print("downloading to: ", basedest)
basedest.mkdir(parents=True, exist_ok=True)
for f in files:
dest = basedest / f
url = os.path.join(REPLICATE_WEIGHTS_URL, baseurl, f)
if not dest.exists():
print("downloading url: ", url)
if dest.suffix == ".json":
download_json(url, dest)
else:
subprocess.check_call(["pget", url, str(dest)], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup_models(self):
config = self.config
am_checkpoint_path = scan_checkpoint(f'{config.output_directory}/prompt_tts_open_source_joint/ckpt', 'g_')
style_encoder_checkpoint_path = scan_checkpoint(f'{config.output_directory}/style_encoder/ckpt', 'checkpoint_', 6)
with open(config.model_config_path, 'r') as fin:
conf = CONFIG.load_cfg(fin)
conf.n_vocab = config.n_symbols
conf.n_speaker = config.speaker_n_labels
style_encoder = StyleEncoder(config)
model_CKPT = torch.load(style_encoder_checkpoint_path, map_location="cpu")
model_ckpt = {}
for key, value in model_CKPT['model'].items():
new_key = key[7:]
model_ckpt[new_key] = value
style_encoder.load_state_dict(model_ckpt, strict=False)
generator = JETSGenerator(conf).to(self.device)
model_CKPT = torch.load(am_checkpoint_path, map_location=self.device)
generator.load_state_dict(model_CKPT['generator'])
generator.eval()
self.tokenizer = AutoTokenizer.from_pretrained(config.bert_path)
with open(config.token_list_path, 'r') as f:
self.token2id = {t.strip():idx for idx, t, in enumerate(f.readlines())}
with open(config.speaker2id_path, encoding='utf-8') as f:
self.speaker2id = {t.strip():idx for idx, t in enumerate(f.readlines())}
self.style_encoder = style_encoder
self.generator = generator
print(self.tokenizer)
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
# self.model = torch.load("./weights.pth")
for weight in DEFAULT_WEIGHTS:
download_weights(weight["src"], weight["dest"], weight["files"])
self.config = Config()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.setup_models()
# def get_style_embedding(prompt, tokenizer, style_encoder):
def get_style_embedding(self, text):
tokenizer = self.tokenizer
style_encoder = self.style_encoder
text = tokenizer([text], return_tensors="pt")
input_ids = text["input_ids"]
token_type_ids = text["token_type_ids"]
attention_mask = text["attention_mask"]
with torch.no_grad():
output = style_encoder(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
)
style_embedding = output["pooled_output"].cpu().squeeze().numpy()
return style_embedding
def tts(self, text, prompt, content, speaker):
style_embedding = self.get_style_embedding(prompt)
content_embedding = self.get_style_embedding(content)
device = self.device
speaker = self.speaker2id[speaker]
text_int = [self.token2id[ph] for ph in text.split()]
sequence = torch.from_numpy(np.array(text_int)).to(device).long().unsqueeze(0)
sequence_len = torch.from_numpy(np.array([len(text_int)])).to(device)
style_embedding = torch.from_numpy(style_embedding).to(device).unsqueeze(0)
content_embedding = torch.from_numpy(content_embedding).to(device).unsqueeze(0)
speaker = torch.from_numpy(np.array([speaker])).to(device)
with torch.no_grad():
infer_output = self.generator(
inputs_ling=sequence,
inputs_style_embedding=style_embedding,
input_lengths=sequence_len,
inputs_content_embedding=content_embedding,
inputs_speaker=speaker,
alpha=1.0
)
audio = infer_output["wav_predictions"].squeeze()* MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
path = os.path.join(self.config.output_directory,"output.mp3")
sf.write(file=path, data=audio, samplerate=self.config.sampling_rate)
return path
def predict(
self,
prompt: str = Input(
description="Input prompt",
default="Happy",
),
content: str = Input(
description="Input text",
default="Emoti-Voice - a Multi-Voice and Prompt-Controlled T-T-S Engine",
),
language: str = Input(
description="Language",
choices=["English", "Chinese"],
default="English",
),
speaker: str = Input(
description="speakers",
choices=Config().speakers,
default=Config().speakers[0],
),
) -> Path:
"""Run a single prediction on the model"""
# processed_input = preprocess(image)
# output = self.model(processed_image, scale)
# return postprocess(output)
if language=="English":
if contains_chinese(content):
raise ValueError("文本含有中文/input text contains Chinese, but language is English")
else:
text = g2p_en(content)
path = self.tts(text, prompt, content, speaker)
return Path(path)
else:
if not contains_chinese(content):
raise ValueError("文本含有英文/input text contains English, but language is Chinese")
else:
text = g2p_cn(content)
path = self.tts(text, prompt, content, speaker)
return Path(path)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。