加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
models.py 29.27 KB
一键复制 编辑 原始数据 按行查看 历史
vcer 提交于 2023-04-28 18:42 . Add files via upload
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
import copy
import math
import torch
from torch import nn
from torch.nn import functional as F
import commons
import modules
import attentions
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from commons import init_weights, get_padding
from pqmf import PQMF
from stft import TorchSTFT
import math
class StochasticDurationPredictor(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
super().__init__()
filter_channels = in_channels # it needs to be removed from future version.
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.n_flows = n_flows
self.gin_channels = gin_channels
self.log_flow = modules.Log()
self.flows = nn.ModuleList()
self.flows.append(modules.ElementwiseAffine(2))
for i in range(n_flows):
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.flows.append(modules.Flip())
self.post_pre = nn.Conv1d(1, filter_channels, 1)
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
self.post_flows = nn.ModuleList()
self.post_flows.append(modules.ElementwiseAffine(2))
for i in range(4):
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.post_flows.append(modules.Flip())
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
x = torch.detach(x)
x = self.pre(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.convs(x, x_mask)
x = self.proj(x) * x_mask
if not reverse:
flows = self.flows
assert w is not None
logdet_tot_q = 0
h_w = self.post_pre(w)
h_w = self.post_convs(h_w, x_mask)
h_w = self.post_proj(h_w) * x_mask
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
z_q = e_q
for flow in self.post_flows:
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
logdet_tot_q += logdet_q
z_u, z1 = torch.split(z_q, [1, 1], 1)
u = torch.sigmoid(z_u) * x_mask
z0 = (w - u) * x_mask
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
logdet_tot = 0
z0, logdet = self.log_flow(z0, x_mask)
logdet_tot += logdet
z = torch.cat([z0, z1], 1)
for flow in flows:
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
logdet_tot = logdet_tot + logdet
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
return nll + logq # [b]
else:
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
for flow in flows:
z = flow(z, x_mask, g=x, reverse=reverse)
z0, z1 = torch.split(z, [1, 1], 1)
logw = z0
return logw
class DurationPredictor(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.gin_channels = gin_channels
self.drop = nn.Dropout(p_dropout)
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
self.norm_1 = modules.LayerNorm(filter_channels)
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
self.norm_2 = modules.LayerNorm(filter_channels)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
def forward(self, x, x_mask, g=None):
x = torch.detach(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask
class TextEncoder(nn.Module):
def __init__(self,
n_vocab,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout):
super().__init__()
self.n_vocab = n_vocab
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.encoder = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths):
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.encoder(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return x, m, logs, x_mask
class Encoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class ResidualCouplingBlock(nn.Module):
def __init__(self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class PosteriorEncoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class iSTFT_Generator(torch.nn.Module):
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, gin_channels=0):
super(iSTFT_Generator, self).__init__()
# self.h = h
self.gen_istft_n_fft = gen_istft_n_fft
self.gen_istft_hop_size = gen_istft_hop_size
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
k, u, padding=(k-u)//2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.post_n_fft = self.gen_istft_n_fft
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
self.cond = nn.Conv1d(256, 512, 1)
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
def forward(self, x, g=None):
x = self.conv_pre(x)
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.reflection_pad(x)
x = self.conv_post(x)
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
phase = math.pi*torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
out = self.stft.inverse(spec, phase).to(x.device)
return out, None
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class Multiband_iSTFT_Generator(torch.nn.Module):
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands, gin_channels=0):
super(Multiband_iSTFT_Generator, self).__init__()
# self.h = h
self.subbands = subbands
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
k, u, padding=(k-u+1-i)//2,output_padding=1-i)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.post_n_fft = gen_istft_n_fft
self.ups.apply(init_weights)
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
self.reshape_pixelshuffle = []
self.subband_conv_post = weight_norm(Conv1d(ch, self.subbands*(self.post_n_fft + 2), 7, 1, padding=3))
self.subband_conv_post.apply(init_weights)
self.cond = nn.Conv1d(256, 512, 1)
self.gen_istft_n_fft = gen_istft_n_fft
self.gen_istft_hop_size = gen_istft_hop_size
def forward(self, x, g=None):
stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft).to(x.device)
#print(x.device)
pqmf = PQMF(x.device)
x = self.conv_pre(x)#[B, ch, length]
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.reflection_pad(x)
x = self.subband_conv_post(x)
x = torch.reshape(x, (x.shape[0], self.subbands, x.shape[1]//self.subbands, x.shape[-1]))
spec = torch.exp(x[:,:,:self.post_n_fft // 2 + 1, :])
phase = math.pi*torch.sin(x[:,:, self.post_n_fft // 2 + 1:, :])
y_mb_hat = stft.inverse(torch.reshape(spec, (spec.shape[0]*self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])), torch.reshape(phase, (phase.shape[0]*self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])))
y_mb_hat = torch.reshape(y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1]))
y_mb_hat = y_mb_hat.squeeze(-2)
y_g_hat = pqmf.synthesis(y_mb_hat)
return y_g_hat, y_mb_hat
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class Multistream_iSTFT_Generator(torch.nn.Module):
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands, gin_channels=0):
super(Multistream_iSTFT_Generator, self).__init__()
# self.h = h
self.subbands = subbands
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
k, u, padding=(k-u+1-i)//2,output_padding=1-i)))#这里k和u不是成倍数的关系,对最终结果很有可能是有影响的,会有checkerboard artifacts的现象
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.post_n_fft = gen_istft_n_fft
self.ups.apply(init_weights)
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
self.reshape_pixelshuffle = []
self.subband_conv_post = weight_norm(Conv1d(ch, self.subbands*(self.post_n_fft + 2), 7, 1, padding=3))
self.subband_conv_post.apply(init_weights)
self.gen_istft_n_fft = gen_istft_n_fft
self.gen_istft_hop_size = gen_istft_hop_size
updown_filter = torch.zeros((self.subbands, self.subbands, self.subbands)).float()
for k in range(self.subbands):
updown_filter[k, k, 0] = 1.0
self.register_buffer("updown_filter", updown_filter)
self.multistream_conv_post = weight_norm(Conv1d(4, 1, kernel_size=63, bias=False, padding=get_padding(63, 1)))
self.multistream_conv_post.apply(init_weights)
self.cond = nn.Conv1d(256, 512, 1)
def forward(self, x, g=None):
stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft).to(x.device)
# pqmf = PQMF(x.device)
x = self.conv_pre(x)#[B, ch, length]
#print(x.size(),g.size())
x = x + self.cond(g) # g [b, 256, 1] => cond(g) [b, 512, 1]
for i in range(self.num_upsamples):
#print(x.size(),g.size())
x = F.leaky_relu(x, modules.LRELU_SLOPE)
#print(x.size(),g.size())
x = self.ups[i](x)
#print(x.size(),g.size())
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
#print(x.size(),g.size())
x = F.leaky_relu(x)
x = self.reflection_pad(x)
x = self.subband_conv_post(x)
x = torch.reshape(x, (x.shape[0], self.subbands, x.shape[1]//self.subbands, x.shape[-1]))
#print(x.size(),g.size())
spec = torch.exp(x[:,:,:self.post_n_fft // 2 + 1, :])
phase = math.pi*torch.sin(x[:,:, self.post_n_fft // 2 + 1:, :])
#print(spec.size(),phase.size())
y_mb_hat = stft.inverse(torch.reshape(spec, (spec.shape[0]*self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])), torch.reshape(phase, (phase.shape[0]*self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])))
#print(y_mb_hat.size())
y_mb_hat = torch.reshape(y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1]))
#print(y_mb_hat.size())
y_mb_hat = y_mb_hat.squeeze(-2)
#print(y_mb_hat.size())
y_mb_hat = F.conv_transpose1d(y_mb_hat, self.updown_filter* self.subbands, stride=self.subbands)#.cuda(x.device) * self.subbands, stride=self.subbands)
#print(y_mb_hat.size())
y_g_hat = self.multistream_conv_post(y_mb_hat)
#print(y_g_hat.size(),y_mb_hat.size())
return y_g_hat, y_mb_hat
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator, self).__init__()
periods = [2,3,5,7,11]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class SpeakerEncoder(torch.nn.Module):
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
super(SpeakerEncoder, self).__init__()
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
self.relu = nn.ReLU()
def forward(self, mels):
self.lstm.flatten_parameters()
_, (hidden, _) = self.lstm(mels)
embeds_raw = self.relu(self.linear(hidden[-1]))
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
mel_slices = []
for i in range(0, total_frames-partial_frames, partial_hop):
mel_range = torch.arange(i, i+partial_frames)
mel_slices.append(mel_range)
return mel_slices
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
mel_len = mel.size(1)
last_mel = mel[:,-partial_frames:]
if mel_len > partial_frames:
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
mels = list(mel[:,s] for s in mel_slices)
mels.append(last_mel)
mels = torch.stack(tuple(mels), 0).squeeze(1)
with torch.no_grad():
partial_embeds = self(mels)
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
#embed = embed / torch.linalg.norm(embed, 2)
else:
with torch.no_grad():
embed = self(last_mel)
return embed
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gen_istft_n_fft,
gen_istft_hop_size,
n_speakers=0,
gin_channels=0,
use_sdp=False,
ms_istft_vits=False,
mb_istft_vits = False,
subbands = False,
istft_vits=False,
**kwargs):
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.ms_istft_vits = ms_istft_vits
self.mb_istft_vits = mb_istft_vits
self.istft_vits = istft_vits
self.use_sdp = use_sdp
self.enc_p = PosteriorEncoder(256, inter_channels, hidden_channels, 5, 1, 16)#768, inter_channels, hidden_channels, 5, 1, 16)
if mb_istft_vits == True:
print('Mutli-band iSTFT VITS')
self.dec = Multiband_iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands, gin_channels=gin_channels)
elif ms_istft_vits == True:
print('Mutli-stream iSTFT VITS')
self.dec = Multistream_iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands, gin_channels=gin_channels)
elif istft_vits == True:
print('iSTFT-VITS')
self.dec = iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, gin_channels=gin_channels)
else:
print('Decoder Error in json file')
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
self.enc_spk = SpeakerEncoder(model_hidden_size=gin_channels, model_embedding_size=gin_channels)
def forward(self, c, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
if c_lengths == None:
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
if spec_lengths == None:
spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
g = self.enc_spk(mel.transpose(1,2))
g = g.unsqueeze(-1)
_, m_p, logs_p, _ = self.enc_p(c, c_lengths)
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
z_p = self.flow(z, spec_mask, g=g)
z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size)
o, o_mb = self.dec(z_slice, g=g)
return o, o_mb, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
def infer(self, c, g=None, mel=None, c_lengths=None):
if c_lengths == None:
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
g = self.enc_spk.embed_utterance(mel.transpose(1,2))
g = g.unsqueeze(-1)
z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths)
z = self.flow(z_p, c_mask, g=g, reverse=True)
o,o_mb = self.dec(z * c_mask, g=g)
return o
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化