代码拉取完成,页面将自动刷新
同步操作将从 jjj1112/CarND_Advanced_Lane_Lines_Finding 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import numpy as np
import cv2
import pickle
import glob
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def get_obj_img_points(images):
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
for image in images:
img = cv2.imread(image)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (9,6), None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
return objpoints, imgpoints
# Camera calibration & Distortion correction
def cal_undistort(img, objpoints, imgpoints):
# checkboard_images = glob.glob('./camera_cal/calibration*.jpg')
# objpoints, imgpoints = get_obj_img_points(checkboard_images)
# mtx: Camera matrix
# dist: Distortion coefficients
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
# undistortion on the original image instead of gray-scaled image
undist = cv2.undistort(img, mtx, dist, None, mtx)
return undist
def gradient_thresh(img, s_thresh=(170,255), sx_thresh=(20,100)):
img = np.copy(img)
hls = cv2.cvtColor(img,cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
#sobelx
sobelx = cv2.Sobel(gray,cv2.CV_64F,1,0)
abs_sobelx = np.absolute(sobelx)
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel>=sx_thresh[0])&(scaled_sobel<=sx_thresh[1])]=1
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel>=s_thresh[0])&(s_channel<=s_thresh[1])]=1
gradient_binary = np.zeros_like(sxbinary)
gradient_binary[(s_binary == 1) | (sxbinary == 1)] = 1
return gradient_binary
def select_yellow(image):
lower = np.array([15,30,150])
upper = np.array([40,255,255])
mask = cv2.inRange(image, lower, upper)
return mask
def select_white(image):
lower = np.array([0,200,0])
upper = np.array([255,255,255])
mask = cv2.inRange(image, lower, upper)
return mask
def color_combined_thresh(image):
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
yellow = select_yellow(hls)
white = select_white(hls)
color_binary = np.zeros_like(yellow)
color_binary[(yellow >= 1) | (white >= 1)] = 1
return color_binary
def perspective_tansform(img):
'''
src = np.float32([[,],[,],[,],[,]]) as four of the detected corners
dst = np.float32([[,],[,],[,],[,]]) as destination points after transformation
'''
img_size = (img.shape[1], img.shape[0])
# src = np.float32([[150,img_size[1]],[580,450],[700,450], [1150, img_size[1]]])
# offset = 200
src = np.float32([[200,img_size[1]],[580,450],[700,450], [1050, img_size[1]]])
offset = 200
dst = np.float32([[offset, img_size[1]], [offset, 0], [img_size[0]-offset, 0], [img_size[0]-offset, img_size[1]]])
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)
unwarped = cv2.warpPerspective(img, Minv, img_size, flags=cv2.INTER_LINEAR)
return warped, M, Minv
def find_lane_pixels(binary_warped):
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]//2) # 直方图的中点
leftx_base = np.argmax(histogram[:midpoint]) # 左半部分最大值坐标
rightx_base = np.argmax(histogram[midpoint:]) + midpoint #右半部分最大值坐标
# HYPERPARAMETERS
# Choose the number of sliding windows
nwindows = 10
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Set height of windows - based on nwindows above and image shape
window_height = np.int(binary_warped.shape[0]//nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()#np.nonzero函数是numpy中用于得到数组array中非零元素的位置(数组索引)的函数
# nonzeroy.shape = nonzerox.shape = 1280*760
nonzeroy = np.array(nonzero[0])# 非0元素的y索引,其实就是坐标
nonzerox = np.array(nonzero[1])# 非0元素的x索引,其实就是坐标
# Current positions to be updated later for each window in nwindows
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
### TO-DO: Find the four below boundaries of the window ###
### 绘制一个矩形,用直方图最大值向两侧偏离margin
### Gonna be updated
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,0,255), 4)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,0,255), 4)
### TO-DO: Identify the nonzero pixels in x and y within the window ###
### 在对于包围框中的元素,取其x坐标
### nonzeroy是一个一维向量,长度为1280*760,存放图中所有像素点的y坐标,x坐标同理
### 下面面的操作首先进行逻辑运算筛选符合条件的索引,符合条件的为True,否则为False
### 然后用nonzero把所有True的点的索引取出来,也就是说在nonzeroy中满足条件的点的索引
### 用该索引取nonzeroy的值,得到的就是该点的y坐标
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
### TO-DO: If you found > minpix pixels, recenter next window ###
### (`right` or `leftx_current`) on their mean position ###
## 遍历9个窗口,如果窗口内的像素点个数超过了minpix,就把窗口的终点移至这些像素点的终点
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))# 索引取nonzeroy的值,得到的就是该点的x坐标
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices (previously was a list of lists of pixels)
# left_lane_inds 是包含一组列表的列表,concatenate将它们合成一个列表
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return out_img, leftx, lefty, rightx, righty
def fit_polynomial(binary_warped):
# Find our lane pixels first
out_img, leftx, lefty, rightx, righty = find_lane_pixels(binary_warped)
# Fit a second order polynomial to each using `np.polyfit`
# 拟合车道线的曲线(二项式曲线)
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
## Visualization ##
window_img = np.zeros_like(out_img)
# left: red right: blue
out_img[lefty, leftx] = [255, 0, 0]
out_img[righty, rightx] = [0, 0, 255]
# Generate x and y values for plotting
# y轴每1个像素创建一个坐标点
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0])
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
pts_left=np.array([[x,y] for x,y in zip(left_fitx,ploty)],np.int32).reshape((-1,1,2))
pts_right=np.array([[x,y] for x,y in zip(right_fitx,ploty)],np.int32).reshape((-1,1,2))
# Draw the lane lines
cv2.polylines(out_img,pts_left,True,(0,255,25),5)
cv2.polylines(out_img,pts_right,True,(0,255,25),5)
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
# Set the width of the windows +/- margin
margin = 100
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the lane regions onto the warped blank image
# cv2.fillPoly(window_img,np.int_([combined_window]),(0,255, 0))
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
# Initialize the out_img without windows
out_img_ = np.dstack((binary_warped, binary_warped, binary_warped))
# Color in left and right line pixels
out_img_[lefty, leftx] = [255, 0, 0]
out_img_[righty, rightx] = [0, 0, 255]
# Draw the lane lines
cv2.polylines(out_img_,pts_left,True,(0,255,25),5)
cv2.polylines(out_img_,pts_right,True,(0,255,25),5)
# Detect and fit the lane lines without sliding windows
prev_poly = cv2.addWeighted(out_img_, 1, window_img, 0.3, 0)
return out_img, prev_poly, left_fitx, right_fitx
def lane_curvature(binary_warped):
img_shape = binary_warped.shape
leftx, lefty, rightx, righty = find_lane_pixels(binary_warped)[1:]
left_fitx, right_fitx = fit_polynomial(binary_warped)[2:]
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension 车道线间距3.7m
ploty = np.linspace(0, img_shape[0]-1, img_shape[0]) # cover same y-range as image
y_eval = np.max(ploty)
# Calculate center position
center_pos = (left_fitx[-1]+right_fitx[-1])/2
# Fit new polynomials to x,y in world space
# left_fit_cr = np.polyfit(ploty*ym_per_pix, left_fitx*xm_per_pix, 2)
# right_fit_cr = np.polyfit(ploty*ym_per_pix, right_fitx*xm_per_pix, 2)
left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
# Calculate the new radius of curvature
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix +
left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix +
right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Now our radius of curvature is in meters
leftx_int =left_fitx[-1]
rightx_int = right_fitx[-1]
center = (center_pos - 1280/2) * xm_per_pix
return left_curverad, right_curverad, center
def drawing(binary_warped, Minv, undist, left_fitx, right_fitx):
# Create an image to draw the lines on
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
# Mask the region between left_fitx(left lane) and right_fitx(right lane) showing the driving area
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
# Transform to the real world
newwarp = cv2.warpPerspective(color_warp, Minv, (binary_warped.shape[1], binary_warped.shape[0]))
# Combine the result with the original image
drawed = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
# Write text (cte, radius of curvature) on image
left_curverad, right_curverad, center = lane_curvature(binary_warped)
font = cv2.FONT_HERSHEY_SIMPLEX
if center >= 0:
cv2.putText(drawed, 'Vehicle is {:.2f}m right of center'.format(center), (50,100),
font, 1, color=(255,255,255), thickness = 2)
else:
cv2.putText(drawed, 'Vehicle is {:.2f}m left of center'.format(abs(center)), (50,100),
font, 1, color=(255,255,255), thickness = 2)
cv2.putText(drawed, 'Radius of curvature is {}m'.format(int((left_curverad + right_curverad)/2)), (50,150),
font, 1, color=(255,255,255), thickness = 2)
return drawed
def image_process(img):
undistort = cal_undistort(img, objpoints, imgpoints)
# image size
imshape = img.shape
# vertices of selected roi
# roi_vertices = np.array([[(0, imshape[0]),
# (imshape[1]*7/15, imshape[0]*3/5),
# (imshape[1]*8/15, imshape[0]*3/5),
# (imshape[1],imshape[0])]],
# dtype=np.int32)
roi_vertices = np.array([[(200,720),(630,400),(650,400),(1150,720)]],dtype=np.int32)
# -------------------------------------------------------------
# Gradient Thresholds
# -------------------------------------------------------------
# Choose a Sobel kernel size: a larger odd number to smooth gradient measurements
gradient_binary= gradient_thresh(undistort)
# Extract selected regions by roi_vertices
# gradient_binary = region_of_interest(gradient_combined, roi_vertices)
# -------------------------------------------------------------
# Color Thresholds
# -------------------------------------------------------------
# selected_image = region_of_interest(undistort, roi_vertices)
color_binary = color_combined_thresh(undistort)
# -------------------------------------------------------------
# Gradient & Color Thresholds
# -------------------------------------------------------------
combined_binary = np.zeros_like(color_binary)
combined_binary[(gradient_binary == 1) | (color_binary ==1)] = 1
# -------------------------------------------------------------
# Perspective Transform
# -------------------------------------------------------------
warped, _, Minv = perspective_tansform(combined_binary)
# -------------------------------------------------------------
# Detect lane lines
# -------------------------------------------------------------
left_fitx, right_fitx = fit_polynomial(warped)[2:]
# Radius of curvature
left_curverad, right_curverad, center = lane_curvature(warped)
# -------------------------------------------------------------
# Drawing
# -------------------------------------------------------------
# Draw the lane & Write text onto the warped blank image
result = drawing(warped, Minv, undistort, left_fitx, right_fitx)
return result
checkboard_images = glob.glob('./camera_cal/calibration*.jpg')
objpoints, imgpoints = get_obj_img_points(checkboard_images)
test_image = mpimg.imread('./test_images/test4.jpg')
result = image_process(test_image)
plt.figure(figsize=(16,9))
plt.imshow(result)
plt.title("Detected Lane", fontsize=25)
plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。