代码拉取完成,页面将自动刷新
import glob
import numpy as np
import torch
import os
import cv2
from model.unet_model import UNet
if __name__ == "__main__":
# 选择设备,有cuda用cuda,没有就用cpu
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
# 加载网络,图片单通道,分类为1。
net = UNet(n_channels=1, n_classes=1)
# 将网络拷贝到deivce中
net.to(device=device)
# 加载模型参数
net.load_state_dict(torch.load('best_model.pth', map_location=device))
# 测试模式
net.eval()
# 读取所有图片路径
tests_path = glob.glob('images/111/*.jpg')
# 遍历素有图片
for test_path in tests_path:
# 保存结果地址
save_res_path = test_path.split('.')[0] + '_res.png'
# 读取图片
img = cv2.imread(test_path)
origin_shape = img.shape
print(origin_shape)
# 转为灰度图
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = cv2.resize(img, (512, 512))
# 转为batch为1,通道为1,大小为512*512的数组
img = img.reshape(1, 1, img.shape[0], img.shape[1])
# 转为tensor
img_tensor = torch.from_numpy(img)
# 将tensor拷贝到device中,只用cpu就是拷贝到cpu中,用cuda就是拷贝到cuda中。
img_tensor = img_tensor.to(device=device, dtype=torch.float32)
# 预测
pred = net(img_tensor)
# 提取结果
pred = np.array(pred.data.cpu()[0])[0]
# 处理结果
pred[pred >= 0.5] = 255
pred[pred < 0.5] = 0
# 保存图片
pred = cv2.resize(pred, (origin_shape[1], origin_shape[0]), interpolation=cv2.INTER_NEAREST)
cv2.imwrite(save_res_path, pred)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。