代码拉取完成,页面将自动刷新
同步操作将从 zhitong-zy/DigitalHumanWithLLMs 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import os
import gradio as gr
from zhconv import convert
from LLM import LLM
from ASR import WhisperASR
from TFG import SadTalker
from TTS import EdgeTTS
from src.cost_time import calculate_time
from configs import *
description = """<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px;">Linly 智能对话系统 (Linly-Talker)</span>
<br>
<span style="font-size: 18px;" id="paper-info">
[<a href="https://zhuanlan.zhihu.com/p/671006998" target="_blank">知乎</a>]
[<a href="https://www.bilibili.com/video/BV1rN4y1a76x/" target="_blank">bilibili</a>]
[<a href="https://github.com/Kedreamix/Linly-Talker" target="_blank">GitHub</a>]
[<a herf="https://kedreamix.github.io/" target="_blank">个人主页</a>]
</span>
<br>
<span>Linly-Talker 是一款智能 AI 对话系统,结合了大型语言模型 (LLMs) 与视觉模型,是一种新颖的人工智能交互方式。</span>
</p>
"""
use_ref_video = False
ref_video = None
ref_info = 'pose'
use_idle_mode = False
length_of_audio = 5
@calculate_time
def Asr(audio):
try:
question = asr.transcribe(audio)
question = convert(question, 'zh-cn')
except Exception as e:
print("ASR Error: ", e)
question = 'Gradio存在一些bug,麦克风模式有时候可能音频还未传入,请重新点击一下语音识别即可'
gr.Warning(question)
return question
@calculate_time
def LLM_response(question, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0):
#answer = llm.predict(question)
answer = llm.generate(question)
print(answer)
try:
tts.predict(answer, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt')
except:
os.system(f'edge-tts --text "{answer}" --voice {voice} --write-media answer.wav')
return 'answer.wav', 'answer.vtt', answer
@calculate_time
def Talker_response(text, voice, rate, volume, pitch, source_image,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
blink_every,
fps):
voice = 'zh-CN-XiaoxiaoNeural' if voice not in tts.SUPPORTED_VOICE else voice
driven_audio, driven_vtt, _ = LLM_response(text, voice, rate, volume, pitch)
video = talker.test2(source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=fps)
if driven_vtt:
return video, driven_vtt
else:
return video
def main():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(description)
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="sadtalker_source_image"):
with gr.TabItem('Source image'):
with gr.Row():
source_image = gr.Image(label="Source image", type="filepath", elem_id="img2img_image", width=512)
with gr.Tabs(elem_id="question_audio"):
with gr.TabItem('对话'):
with gr.Column(variant='panel'):
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="Input Text", lines=3, info = '文字对话')
with gr.Accordion("Advanced Settings",
open=False,
visible=True) as parameter_article:
voice = gr.Dropdown(tts.SUPPORTED_VOICE,
value='zh-CN-XiaoxiaoNeural',
label="Voice")
rate = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1.0,
label='Rate')
volume = gr.Slider(minimum=0,
maximum=100,
value=100,
step=1,
label='Volume')
pitch = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1,
label='Pitch')
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
# with gr.Tabs(elem_id="response_audio"):
# with gr.TabItem("语音选择"):
# with gr.Column(variant='panel'):
# voice = gr.Dropdown(VOICES, values='zh-CN-XiaoxiaoNeural')
with gr.Tabs(elem_id="text_examples"):
gr.Markdown("## Text Examples")
examples = [
['应对压力最有效的方法是什么?'],
['如何进行时间管理?'],
['为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?'],
['近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?'],
['三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?'],
['撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。'],
['翻译成中文:Luck is a dividend of sweat. The more you sweat, the luckier you get.'],
]
gr.Examples(
examples = examples,
inputs = [input_text],
)
# driven_audio = 'answer.wav'
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="sadtalker_checkbox"):
with gr.TabItem('Settings'):
with gr.Accordion("Advanced Settings",
open=False):
gr.Markdown("SadTalker: need help? please visit our [[best practice page](https://github.com/OpenTalker/SadTalker/blob/main/docs/best_practice.md)] for more detials")
with gr.Column(variant='panel'):
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
with gr.Row():
pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) #
exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) #
blink_every = gr.Checkbox(label="use eye blink", value=True)
with gr.Row():
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model? 256 is faster") #
preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")
with gr.Row():
is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
facerender = gr.Radio(['facevid2vid', 'PIRender'], value='facevid2vid', label='facerender', info="which face render?")
with gr.Row():
batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=1)
fps = gr.Slider(label='fps in generation', step=1, maximum=30, value =20)
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer(slow)")
with gr.Tabs(elem_id="sadtalker_genearted"):
gen_video = gr.Video(label="Generated video", format="mp4",scale=0.8)
submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary')
submit.click(
fn=Talker_response,
inputs=[input_text,
voice, rate, volume, pitch,
source_image,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
blink_every,
fps],
outputs=[gen_video]
)
with gr.Row():
examples = [
[
'examples/source_image/full_body_2.png',
'crop',
False,
False
],
[
'examples/source_image/full_body_1.png',
'crop',
False,
False
],
[
'examples/source_image/full3.png',
'crop',
False,
False
],
[
'examples/source_image/full4.jpeg',
'crop',
False,
False
],
[
'examples/source_image/art_13.png',
'crop',
False,
False
],
[
'examples/source_image/art_5.png',
'crop',
False,
False
],
]
gr.Examples(examples=examples,
fn=Talker_response,
inputs=[
source_image,
preprocess_type,
is_still_mode,
enhancer],
outputs=[gen_video],
# cache_examples=True,
)
return inference
if __name__ == "__main__":
# llm = LLM(mode='offline').init_model('Linly', 'Linly-AI/Chinese-LLaMA-2-7B-hf')
# llm = LLM(mode='offline').init_model('Gemini', 'gemini-pro', api_key = "your api key")
# llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat')
llm = LLM(mode=mode).init_model('Qwen', 'Qwen/Qwen-1_8B-Chat')
talker = SadTalker(lazy_load=True)
asr = WhisperASR('base')
tts = EdgeTTS()
gr.close_all()
demo = main()
demo.queue()
# demo.launch()
demo.launch(server_name="127.0.0.1", # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0"
server_port=port,
# 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话
ssl_certfile=ssl_certfile,
ssl_keyfile=ssl_keyfile,
ssl_verify=False,
debug=True)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。