代码拉取完成,页面将自动刷新
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys
import cv2
import time
import numpy as np
import core.utils as utils
import tensorflow as tf
from PIL import Image
if __name__ == '__main__':
pb_file = "./checkpoint/yolov4.pb"
video_path = "./data/images/road.mp4"
# video_path = 0
num_classes = 80
input_size = 416
score_thresh = 0.3
iou_type = 'diou' #yolov4:diou, else giou
iou_thresh = 0.45
graph = tf.Graph()
return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
with tf.Session(graph=graph) as sess:
vid = cv2.VideoCapture(video_path)
while True:
return_value, frame = vid.read()
if return_value:
image = Image.fromarray(frame)
frame_size = frame.shape[:2]
image_data = utils.image_preporcess(np.copy(frame), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
prev_time = time.time()
pred_sbbox, pred_mbbox, pred_lbbox = sess.run([return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)), np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, score_thresh)
bboxes = utils.nms(bboxes, iou_type, iou_thresh, method='nms')
image = utils.draw_bbox(frame, bboxes)
curr_time = time.time()
exec_time = curr_time - prev_time
result = np.asarray(image)
info = "time: %.2f ms" % (1000 * exec_time)
cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imshow("result", result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
print('Finish processing!')
raise ValueError("No image!")
break
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。