代码拉取完成,页面将自动刷新
同步操作将从 kerlomz/captcha_trainer 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <kerlomz@gmail.com>
import io
import re
import cv2
import random
import PIL.Image
import numpy as np
import tensorflow as tf
from exception import *
from constants import RunMode
from config import ModelConfig, LabelFrom, LossFunction
from category import encode_maps, FULL_ANGLE_MAP
from pretreatment import preprocessing
from pretreatment import preprocessing_by_func
from tools.gif_frames import concat_frames, blend_frame
from collections import Counter
class Encoder(object):
"""
编码层:用于将数据输入编码为可输入网络的数据
"""
def __init__(self, model_conf: ModelConfig, mode: RunMode):
self.model_conf = model_conf
self.mode = mode
self.category_param = self.model_conf.category_param
@staticmethod
def main_color_replace(im: np.ndarray, num=2, repl=(255, 255, 255)):
red, green, blue = im.T
colors = []
for (r, g, b) in im[:, 1, :]:
colors.append((r, g, b))
most_common = [i[0] for i in Counter(colors).most_common(num)]
areas = False
for r, g, b in most_common:
areas = areas | ((red == r) & (green == g) & (blue == b))
im[:, :, :][areas.T] = repl
return im
def image(self, path_or_bytes):
"""针对图片类型的输入的编码"""
# im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
# The OpenCV cannot handle gif format images, it will return None.
# if im is None:
path_or_stream = io.BytesIO(path_or_bytes) if isinstance(path_or_bytes, bytes) else path_or_bytes
if not path_or_stream:
return "Picture is corrupted: {}".format(path_or_bytes)
try:
pil_image = PIL.Image.open(path_or_stream)
except OSError as e:
return "{} - {}".format(e, path_or_bytes)
use_compress = True
gif_handle = self.model_conf.pre_concat_frames != -1 or self.model_conf.pre_blend_frames != -1
if pil_image.mode == 'P' and not gif_handle:
pil_image = pil_image.convert('RGB')
rgb = pil_image.split()
if self.mode == RunMode.Trains and use_compress:
img_compress = io.BytesIO()
pil_image.convert('RGB').save(img_compress, format='JPEG', quality=random.randint(75, 100))
img_compress_bytes = img_compress.getvalue()
img_compress.close()
path_or_stream = io.BytesIO(img_compress_bytes)
pil_image = PIL.Image.open(path_or_stream)
if len(rgb) == 1 and self.model_conf.image_channel == 3:
return "The number of image channels {} is inconsistent with the number of configured channels {}.".format(
len(rgb), self.model_conf.image_channel
)
size = pil_image.size
# if self.mode == RunMode.Trains and len(rgb) == 3 and use_compress:
# new_size = [size[0] + random.randint(5, 10), size[1] + random.randint(5, 10)]
# background = PIL.Image.new(
# 'RGB', new_size, (255, 255, 255)
# )
# random_offset_w = random.randint(0, 5)
# random_offset_h = random.randint(0, 5)
# background.paste(
# pil_image,
# (
# random_offset_w,
# random_offset_h,
# size[0] + random_offset_w,
# size[1] + random_offset_h
# ),
# None
# )
# background.convert('RGB')
# pil_image = background
if len(rgb) > 3 and self.model_conf.pre_replace_transparent and not gif_handle and not use_compress:
background = PIL.Image.new('RGBA', pil_image.size, (255, 255, 255))
try:
background.paste(pil_image, (0, 0, size[0], size[1]), pil_image)
background.convert('RGB')
pil_image = background
except:
pil_image = pil_image.convert('RGB')
if len(pil_image.split()) > 3 and self.model_conf.image_channel == 3:
pil_image = pil_image.convert('RGB')
if self.model_conf.pre_concat_frames != -1:
im = concat_frames(pil_image, need_frame=self.model_conf.pre_concat_frames)
elif self.model_conf.pre_blend_frames != -1:
im = blend_frame(pil_image, need_frame=self.model_conf.pre_blend_frames)
else:
im = np.array(pil_image)
if isinstance(im, list):
return None
im = preprocessing_by_func(
exec_map=self.model_conf.pre_exec_map,
src_arr=im
)
if self.model_conf.image_channel == 1 and len(im.shape) == 3:
if self.mode == RunMode.Trains:
im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY if bool(random.getrandbits(1)) else cv2.COLOR_BGR2GRAY)
else:
im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
im = preprocessing(
image=im,
binaryzation=self.model_conf.pre_binaryzation,
)
if self.model_conf.pre_horizontal_stitching:
up_slice = im[0: int(size[1] / 2), 0: size[0]]
down_slice = im[int(size[1] / 2): size[1], 0: size[0]]
im = np.concatenate((up_slice, down_slice), axis=1)
if self.mode == RunMode.Trains and bool(random.getrandbits(1)):
im = preprocessing(
image=im,
binaryzation=self.model_conf.da_binaryzation,
median_blur=self.model_conf.da_median_blur,
gaussian_blur=self.model_conf.da_gaussian_blur,
equalize_hist=self.model_conf.da_equalize_hist,
laplacian=self.model_conf.da_laplace,
rotate=self.model_conf.da_rotate,
warp_perspective=self.model_conf.da_warp_perspective,
sp_noise=self.model_conf.da_sp_noise,
random_brightness=self.model_conf.da_brightness,
random_saturation=self.model_conf.da_saturation,
random_hue=self.model_conf.da_hue,
random_gamma=self.model_conf.da_gamma,
random_channel_swap=self.model_conf.da_channel_swap,
random_blank=self.model_conf.da_random_blank,
random_transition=self.model_conf.da_random_transition,
).astype(np.float32)
else:
im = im.astype(np.float32)
if self.model_conf.resize[0] == -1:
# random_ratio = random.choice([2.5, 3, 3.5, 3.2, 2.7, 2.75])
ratio = self.model_conf.resize[1] / size[1]
# random_width = int(random_ratio * RESIZE[1])
resize_width = int(ratio * size[0])
# resize_width = random_width if is_random else resize_width
im = cv2.resize(im, (resize_width, self.model_conf.resize[1]))
else:
im = cv2.resize(im, (self.model_conf.resize[0], self.model_conf.resize[1]))
im = im.swapaxes(0, 1)
if self.model_conf.image_channel == 1:
return np.array((im[:, :, np.newaxis]) / 255.)
else:
return np.array(im[:, :]) / 255.
def text(self, content):
"""针对文本类型的输入的编码"""
if isinstance(content, bytes):
content = content.decode("utf8")
found = content
# 如果匹配内置的大小写规范,触发自动转换
if isinstance(self.category_param, str) and '_LOWER' in self.category_param:
found = found.lower()
if isinstance(self.category_param, str) and '_UPPER' in self.category_param:
found = found.upper()
if self.model_conf.category_param == 'ARITHMETIC':
found = found.replace("x", "×").replace('?', "?")
# 标签是否包含分隔符
if self.model_conf.label_split:
labels = found.split(self.model_conf.label_split)
elif '&' in found:
labels = found.split('&')
elif self.model_conf.max_label_num == 1:
labels = [found]
else:
labels = [_ for _ in found]
labels = self.filter_full_angle(labels)
try:
if not labels:
return [0]
# 根据类别集合找到对应映射编码为dense数组
if self.model_conf.loss_func == LossFunction.CTC:
label = self.split_continuous_char(
[encode_maps(self.model_conf.category)[i] for i in labels]
)
else:
label = self.auto_padding_char(
[encode_maps(self.model_conf.category)[i] for i in labels]
)
return label
except KeyError as e:
return dict(e=e, label=content, char=e.args[0])
# exception(
# 'The sample label {} contains invalid charset: {}.'.format(
# content, e.args[0]
# ), ConfigException.SAMPLE_LABEL_ERROR
# )
def split_continuous_char(self, content):
# 为连续的分类插入空白符
store_list = []
# blank_char = [self.model_conf.category_num] if bool(random.getrandbits(1)) else [0]
blank_char = [self.model_conf.category_num]
for i in range(len(content) - 1):
store_list.append(content[i])
if content[i] == content[i + 1]:
store_list += blank_char
store_list.append(content[-1])
return store_list
def auto_padding_char(self, content):
if len(content) < self.model_conf.max_label_num and self.model_conf.auto_padding:
remain_label_num = self.model_conf.max_label_num - len(content)
return [0] * remain_label_num + content
# return content + [0] * remain_label_num
return content
@staticmethod
def filter_full_angle(content):
return [FULL_ANGLE_MAP.get(i) if i in FULL_ANGLE_MAP.keys() else i for i in content if i != ' ']
if __name__ == '__main__':
pass
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。