代码拉取完成,页面将自动刷新
同步操作将从 kerlomz/captcha_trainer 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <kerlomz@gmail.com>
import sys
import random
from tqdm import tqdm
import tensorflow as tf
from config import *
from constants import RunMode
_RANDOM_SEED = 0
class DataSets:
"""此类用于打包数据集为TFRecords格式"""
def __init__(self, model: ModelConfig):
self.ignore_list = ["Thumbs.db", ".DS_Store"]
self.model: ModelConfig = model
if not os.path.exists(self.model.dataset_root_path):
os.makedirs(self.model.dataset_root_path)
@staticmethod
def read_image(path):
"""
读取图片
:param path: 图片路径
:return:
"""
with open(path, "rb") as f:
return f.read()
def dataset_exists(self):
"""数据集是否存在判断函数"""
for file in (self.model.trains_path[DatasetType.TFRecords] + self.model.validation_path[DatasetType.TFRecords]):
if not os.path.exists(file):
return False
return True
@staticmethod
def bytes_feature(values):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
def input_to_tfrecords(self, input_data, label):
return tf.train.Example(features=tf.train.Features(feature={
'input': self.bytes_feature(input_data),
'label': self.bytes_feature(label),
}))
def convert_dataset_from_filename(self, output_filename, file_list, mode: RunMode, is_add=False):
if is_add:
output_filename = self.model.dataset_increasing_name(mode)
if not output_filename:
raise FileNotFoundError('Basic data set missing, please check.')
output_filename = os.path.join(self.model.dataset_root_path, output_filename)
with tf.io.TFRecordWriter(output_filename) as writer:
pbar = tqdm(file_list)
for i, file_name in enumerate(pbar):
try:
if file_name.split("/")[-1] in self.ignore_list:
continue
image_data = self.read_image(file_name)
try:
labels = re.search(self.model.extract_regex, file_name.split(PATH_SPLIT)[-1])
except re.error as e:
print('error:', e)
return
if labels:
labels = labels.group()
else:
tf.compat.v1.logging.warning('invalid filename {}, ignored.'.format(file_name))
continue
# raise NameError('invalid filename {}'.format(file_name))
labels = labels.encode('utf-8')
example = self.input_to_tfrecords(image_data, labels)
writer.write(example.SerializeToString())
pbar.set_description('[Processing dataset %s] [filename: %s]' % (mode, file_name))
except IOError as e:
print('could not read:', file_list[1])
print('error:', e)
print('skip it \n')
def convert_dataset_from_txt(self, output_filename, file_path, label_lines, mode: RunMode, is_add=False):
if is_add:
output_filename = self.model.dataset_increasing_name(mode)
if not output_filename:
raise FileNotFoundError('Basic data set missing, please check.')
output_filename = os.path.join(self.model.dataset_root_path, output_filename)
file_list, label_list = [], []
for line in label_lines:
filename, label = line.split(" ", 1)
label = label.replace("\n", "")
label_list.append(label.encode('utf-8'))
path = os.path.join(file_path, filename)
file_list.append(path)
if os.path.exists(output_filename):
print('已存在, 跳过')
return
with tf.io.TFRecordWriter(output_filename) as writer:
pbar = tqdm(file_list)
for i, file_name in enumerate(pbar):
try:
image_data = self.read_image(file_name)
labels = label_list[i]
example = self.input_to_tfrecords(image_data, labels)
writer.write(example.SerializeToString())
pbar.set_description('[Processing dataset %s] [filename: %s]' % (mode, file_name))
except IOError as e:
print('could not read:', file_list[1])
print('error:', e)
print('skip it \n')
@staticmethod
def merge_source(source):
if isinstance(source, list):
origin_dataset = []
for trains_path in source:
origin_dataset += [
os.path.join(trains_path, trains).replace("\\", "/") for trains in os.listdir(trains_path)
]
elif isinstance(source, str):
origin_dataset = [os.path.join(source, trains) for trains in os.listdir(source)]
else:
return
random.seed(0)
random.shuffle(origin_dataset)
return origin_dataset
def make_dataset(self, trains_path=None, validation_path=None, is_add=False, callback=None, msg=None):
if self.dataset_exists() and not is_add:
state = "EXISTS"
if callback:
callback()
if msg:
msg(state)
return
if not self.model.dataset_path_root:
state = "CONF_ERROR"
if callback:
callback()
if msg:
msg(state)
return
trains_path = trains_path if is_add else self.model.trains_path[DatasetType.Directory]
validation_path = validation_path if is_add else self.model.validation_path[DatasetType.Directory]
trains_path = [trains_path] if isinstance(trains_path, str) else trains_path
validation_path = [validation_path] if isinstance(validation_path, str) else validation_path
if validation_path and not is_add:
if self.model.label_from == LabelFrom.FileName:
trains_dataset = self.merge_source(trains_path)
validation_dataset = self.merge_source(validation_path)
self.convert_dataset_from_filename(
self.model.validation_path[DatasetType.TFRecords][-1 if is_add else 0],
validation_dataset,
mode=RunMode.Validation,
is_add=is_add,
)
self.convert_dataset_from_filename(
self.model.trains_path[DatasetType.TFRecords][-1 if is_add else 0],
trains_dataset,
mode=RunMode.Trains,
is_add=is_add,
)
elif self.model.label_from == LabelFrom.TXT:
train_label_file = os.path.join(os.path.dirname(trains_path[0]), "train.txt")
val_label_file = os.path.join(os.path.dirname(validation_path[0]), "val.txt")
if not os.path.exists(train_label_file) or not os.path.exists(val_label_file):
msg("Train or validation label file not found!")
if callback:
callback()
return
with open(train_label_file, "r", encoding="utf8") as f_train:
train_label_line = f_train.readlines()
with open(val_label_file, "r", encoding="utf8") as f_val:
val_label_line = f_val.readlines()
self.convert_dataset_from_txt(
self.model.validation_path[DatasetType.TFRecords][-1 if is_add else 0],
label_lines=val_label_line,
file_path=validation_path[0],
mode=RunMode.Validation,
is_add=is_add,
)
self.convert_dataset_from_txt(
self.model.trains_path[DatasetType.TFRecords][-1 if is_add else 0],
label_lines=train_label_line,
file_path=trains_path[0],
mode=RunMode.Trains,
is_add=is_add,
)
else:
if self.model.label_from == LabelFrom.FileName:
origin_dataset = self.merge_source(trains_path)
trains_dataset = origin_dataset[self.model.validation_set_num:]
if self.model.validation_set_num > 0:
validation_dataset = origin_dataset[:self.model.validation_set_num]
self.convert_dataset_from_filename(
self.model.validation_path[DatasetType.TFRecords][-1 if is_add else 0],
validation_dataset,
mode=RunMode.Validation,
is_add=is_add
)
elif self.model.validation_set_num < 0:
self.convert_dataset_from_filename(
self.model.validation_path[DatasetType.TFRecords][-1 if is_add else 0],
trains_dataset,
mode=RunMode.Validation,
is_add=is_add
)
self.convert_dataset_from_filename(
self.model.trains_path[DatasetType.TFRecords][-1 if is_add else 0],
trains_dataset,
mode=RunMode.Trains,
is_add=is_add
)
elif self.model.label_from == LabelFrom.TXT:
train_label_file = os.path.join(os.path.dirname(trains_path[0]), "train.txt")
if not os.path.exists(train_label_file):
msg("Train label file not found!")
if callback:
callback()
return
with open(train_label_file, "r", encoding="utf8") as f:
sample_label_line = f.readlines()
random.shuffle(sample_label_line)
train_label_line = sample_label_line[self.model.validation_set_num:]
val_label_line = sample_label_line[:self.model.validation_set_num]
self.convert_dataset_from_txt(
self.model.validation_path[DatasetType.TFRecords][-1 if is_add else 0],
label_lines=val_label_line,
file_path=trains_path[0],
mode=RunMode.Validation,
is_add=is_add,
)
self.convert_dataset_from_txt(
self.model.trains_path[DatasetType.TFRecords][-1 if is_add else 0],
label_lines=train_label_line,
file_path=trains_path[0],
mode=RunMode.Trains,
is_add=is_add,
)
state = "DONE"
if callback:
callback()
if msg:
msg(state)
return
if __name__ == '__main__':
model_conf = ModelConfig(sys.argv[-1])
_dataset = DataSets(model_conf)
_dataset.make_dataset()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。